Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107126542> ?p ?o ?g. }
- W3107126542 abstract "Abstract Background Aboveground biomass (AGB) is a fundamental indicator of forest ecosystem productivity and health and hence plays an essential role in evaluating forest carbon reserves and supporting the development of targeted forest management plans. Methods Here, we proposed a random forest/co-kriging framework that integrates the strengths of machine learning and geostatistical approaches to improve the mapping accuracies of AGB in northern Guangdong Province of China. We used Landsat time-series observations, Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data, and National Forest Inventory (NFI) plot measurements, to generate the forest AGB maps at three time points (1992, 2002 and 2010) showing the spatio-temporal dynamics of AGB in the subtropical forests in Guangdong, China. Results The proposed model was capable of mapping forest AGB using spectral, textural, topographical variables and the radar backscatter coefficients in an effective and reliable manner. The root mean square error of the plot-level AGB validation was between 15.62 and 53.78 t∙ha − 1 , the mean absolute error ranged from 6.54 to 32.32 t∙ha − 1 , the bias ranged from − 2.14 to 1.07 t∙ha − 1 , and the relative improvement over the random forest algorithm was between 3.8% and 17.7%. The largest coefficient of determination (0.81) and the smallest mean absolute error (6.54 t∙ha − 1 ) were observed in the 1992 AGB map. The spectral saturation effect was minimized by adding the PALSAR data to the modeling variable set in 2010. By adding elevation as a covariable, the co-kriging outperformed the ordinary kriging method for the prediction of the AGB residuals, because co-kriging resulted in better interpolation results in the valleys and plains of the study area. Conclusions Validation of the three AGB maps with an independent dataset indicated that the random forest/co-kriging performed best for AGB prediction, followed by random forest coupled with ordinary kriging (random forest/ordinary kriging), and the random forest model. The proposed random forest/co-kriging framework provides an accurate and reliable method for AGB mapping in subtropical forest regions with complex topography. The resulting AGB maps are suitable for the targeted development of forest management actions to promote carbon sequestration and sustainable forest management in the context of climate change." @default.
- W3107126542 created "2020-12-07" @default.
- W3107126542 creator A5006164680 @default.
- W3107126542 creator A5016469862 @default.
- W3107126542 creator A5032764121 @default.
- W3107126542 creator A5070050410 @default.
- W3107126542 creator A5075177267 @default.
- W3107126542 date "2020-11-26" @default.
- W3107126542 modified "2023-10-17" @default.
- W3107126542 title "Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests" @default.
- W3107126542 cites W1527561456 @default.
- W3107126542 cites W175101297 @default.
- W3107126542 cites W1948133483 @default.
- W3107126542 cites W1965300016 @default.
- W3107126542 cites W1971824428 @default.
- W3107126542 cites W1974328142 @default.
- W3107126542 cites W1977761893 @default.
- W3107126542 cites W1979629139 @default.
- W3107126542 cites W1979967512 @default.
- W3107126542 cites W1981855554 @default.
- W3107126542 cites W1987604918 @default.
- W3107126542 cites W1988880008 @default.
- W3107126542 cites W2009707410 @default.
- W3107126542 cites W2010390951 @default.
- W3107126542 cites W2012519352 @default.
- W3107126542 cites W2013042228 @default.
- W3107126542 cites W2017658827 @default.
- W3107126542 cites W2022669603 @default.
- W3107126542 cites W2024697317 @default.
- W3107126542 cites W2026716023 @default.
- W3107126542 cites W2029169758 @default.
- W3107126542 cites W2035911819 @default.
- W3107126542 cites W2038147443 @default.
- W3107126542 cites W2040975718 @default.
- W3107126542 cites W2046443332 @default.
- W3107126542 cites W2052438412 @default.
- W3107126542 cites W2074984119 @default.
- W3107126542 cites W2077944642 @default.
- W3107126542 cites W2084040203 @default.
- W3107126542 cites W2087664971 @default.
- W3107126542 cites W2091259694 @default.
- W3107126542 cites W2095168298 @default.
- W3107126542 cites W2095357153 @default.
- W3107126542 cites W2096611296 @default.
- W3107126542 cites W2105770001 @default.
- W3107126542 cites W2109631166 @default.
- W3107126542 cites W2113249705 @default.
- W3107126542 cites W2117026615 @default.
- W3107126542 cites W2120240539 @default.
- W3107126542 cites W2120597179 @default.
- W3107126542 cites W2121942758 @default.
- W3107126542 cites W2133613984 @default.
- W3107126542 cites W2143600141 @default.
- W3107126542 cites W2155863249 @default.
- W3107126542 cites W2156374693 @default.
- W3107126542 cites W2157929592 @default.
- W3107126542 cites W2163795496 @default.
- W3107126542 cites W2166394891 @default.
- W3107126542 cites W2168525280 @default.
- W3107126542 cites W2171329642 @default.
- W3107126542 cites W2193261635 @default.
- W3107126542 cites W2201465434 @default.
- W3107126542 cites W2273297058 @default.
- W3107126542 cites W2288237883 @default.
- W3107126542 cites W2289402370 @default.
- W3107126542 cites W2295813245 @default.
- W3107126542 cites W2302803999 @default.
- W3107126542 cites W2338625058 @default.
- W3107126542 cites W2409620547 @default.
- W3107126542 cites W2470393719 @default.
- W3107126542 cites W2471246966 @default.
- W3107126542 cites W2508131240 @default.
- W3107126542 cites W2538404941 @default.
- W3107126542 cites W2553285082 @default.
- W3107126542 cites W2583301019 @default.
- W3107126542 cites W2612804409 @default.
- W3107126542 cites W2613732719 @default.
- W3107126542 cites W2624854028 @default.
- W3107126542 cites W2756906114 @default.
- W3107126542 cites W2776203602 @default.
- W3107126542 cites W2800536838 @default.
- W3107126542 cites W2801032191 @default.
- W3107126542 cites W2803256204 @default.
- W3107126542 cites W2804466639 @default.
- W3107126542 cites W2892950114 @default.
- W3107126542 cites W2901361750 @default.
- W3107126542 cites W2902580584 @default.
- W3107126542 cites W2903145762 @default.
- W3107126542 cites W2905659887 @default.
- W3107126542 cites W2914540485 @default.
- W3107126542 cites W2915777880 @default.
- W3107126542 cites W2945750834 @default.
- W3107126542 cites W2946095568 @default.
- W3107126542 cites W2946533443 @default.
- W3107126542 cites W2953232201 @default.
- W3107126542 cites W2965977570 @default.
- W3107126542 cites W2981716671 @default.
- W3107126542 cites W3012882745 @default.
- W3107126542 cites W4205330297 @default.
- W3107126542 cites W4253934446 @default.