Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107134037> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3107134037 endingPage "96" @default.
- W3107134037 startingPage "87" @default.
- W3107134037 abstract "Al-Mansourieh zone is a part of Al-Khalis city within the province of Diyala and located in the Diyala River Basin in eastern Iraq with a total area about 830 km2. Groundwater is the main water source for agriculture in this zone. Random well drilling without geological and hydraulic information has led the most of these wells to dry up quickly. Therefore, it is necessary to estimate the levels of groundwater in wells through observed data. In this study, Alyuda NeroIntelligance 2.1 software was applied to predict the groundwater levels in 244 wells using sets of measured data. These data included the coordinates of wells (x, y), elevations, well depth, discharge and groundwater levels. Three ANN structures (5-3-3-1, 5-10-10-1 and 5-11-11-1) were used to predict the groundwater levels and to acquire the best matching between the measured and ANN predicted values. The coefficient of correlation, coefficient determination (R2) and sum-square error (SSE) were used to evaluate the performance of the ANN models. According to the ANN results, the model with the three structures has a good predictability and proves more effective for determining groundwater level in wells. The best predictor was achieved in the structure 5-3-3-1, with R2 about 0.92, 0.89, 0.84 and 0.91 in training, validation, testing and all processes respectively. The minimum average error in the best predictor is achieved in validation and testing processes at about 0.130 and 0.171 respectively. On the other hand, the results indicated that the model has the potential to determine the appropriate places for drilling the wells to obtain the highest level of groundwater." @default.
- W3107134037 created "2020-12-07" @default.
- W3107134037 creator A5015212451 @default.
- W3107134037 creator A5079934595 @default.
- W3107134037 creator A5089683540 @default.
- W3107134037 date "2020-03-28" @default.
- W3107134037 modified "2023-09-26" @default.
- W3107134037 title "Predicting groundwater level of wells in the Diyala River Basin in eastern Iraq using artificial neural network" @default.
- W3107134037 doi "https://doi.org/10.19637/j.cnki.2305-7068.2020.01.009" @default.
- W3107134037 hasPublicationYear "2020" @default.
- W3107134037 type Work @default.
- W3107134037 sameAs 3107134037 @default.
- W3107134037 citedByCount "0" @default.
- W3107134037 crossrefType "journal-article" @default.
- W3107134037 hasAuthorship W3107134037A5015212451 @default.
- W3107134037 hasAuthorship W3107134037A5079934595 @default.
- W3107134037 hasAuthorship W3107134037A5089683540 @default.
- W3107134037 hasConcept C105795698 @default.
- W3107134037 hasConcept C109007969 @default.
- W3107134037 hasConcept C114793014 @default.
- W3107134037 hasConcept C118416809 @default.
- W3107134037 hasConcept C119857082 @default.
- W3107134037 hasConcept C127313418 @default.
- W3107134037 hasConcept C127413603 @default.
- W3107134037 hasConcept C159390177 @default.
- W3107134037 hasConcept C187320778 @default.
- W3107134037 hasConcept C25197100 @default.
- W3107134037 hasConcept C2780092901 @default.
- W3107134037 hasConcept C33923547 @default.
- W3107134037 hasConcept C39432304 @default.
- W3107134037 hasConcept C41008148 @default.
- W3107134037 hasConcept C50644808 @default.
- W3107134037 hasConcept C76177295 @default.
- W3107134037 hasConcept C76886044 @default.
- W3107134037 hasConcept C78519656 @default.
- W3107134037 hasConceptScore W3107134037C105795698 @default.
- W3107134037 hasConceptScore W3107134037C109007969 @default.
- W3107134037 hasConceptScore W3107134037C114793014 @default.
- W3107134037 hasConceptScore W3107134037C118416809 @default.
- W3107134037 hasConceptScore W3107134037C119857082 @default.
- W3107134037 hasConceptScore W3107134037C127313418 @default.
- W3107134037 hasConceptScore W3107134037C127413603 @default.
- W3107134037 hasConceptScore W3107134037C159390177 @default.
- W3107134037 hasConceptScore W3107134037C187320778 @default.
- W3107134037 hasConceptScore W3107134037C25197100 @default.
- W3107134037 hasConceptScore W3107134037C2780092901 @default.
- W3107134037 hasConceptScore W3107134037C33923547 @default.
- W3107134037 hasConceptScore W3107134037C39432304 @default.
- W3107134037 hasConceptScore W3107134037C41008148 @default.
- W3107134037 hasConceptScore W3107134037C50644808 @default.
- W3107134037 hasConceptScore W3107134037C76177295 @default.
- W3107134037 hasConceptScore W3107134037C76886044 @default.
- W3107134037 hasConceptScore W3107134037C78519656 @default.
- W3107134037 hasIssue "1" @default.
- W3107134037 hasLocation W31071340371 @default.
- W3107134037 hasOpenAccess W3107134037 @default.
- W3107134037 hasPrimaryLocation W31071340371 @default.
- W3107134037 hasRelatedWork W2009636568 @default.
- W3107134037 hasRelatedWork W2026459496 @default.
- W3107134037 hasRelatedWork W2045273561 @default.
- W3107134037 hasRelatedWork W2054384205 @default.
- W3107134037 hasRelatedWork W2092813940 @default.
- W3107134037 hasRelatedWork W2278204021 @default.
- W3107134037 hasRelatedWork W2378378032 @default.
- W3107134037 hasRelatedWork W2386062194 @default.
- W3107134037 hasRelatedWork W2388901769 @default.
- W3107134037 hasRelatedWork W2571713011 @default.
- W3107134037 hasRelatedWork W2594016056 @default.
- W3107134037 hasRelatedWork W2783181589 @default.
- W3107134037 hasRelatedWork W2793342656 @default.
- W3107134037 hasRelatedWork W2944080435 @default.
- W3107134037 hasRelatedWork W3005867806 @default.
- W3107134037 hasRelatedWork W3042612344 @default.
- W3107134037 hasRelatedWork W3091970714 @default.
- W3107134037 hasRelatedWork W3109390987 @default.
- W3107134037 hasRelatedWork W3129175746 @default.
- W3107134037 hasRelatedWork W3174746292 @default.
- W3107134037 hasVolume "8" @default.
- W3107134037 isParatext "false" @default.
- W3107134037 isRetracted "false" @default.
- W3107134037 magId "3107134037" @default.
- W3107134037 workType "article" @default.