Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107152034> ?p ?o ?g. }
- W3107152034 endingPage "8634" @default.
- W3107152034 startingPage "8634" @default.
- W3107152034 abstract "Smart grid technology based on renewable energy and energy storage systems are attracting considerable attention towards energy crises. Accurate and reliable model for electricity prediction is considered a key factor for a suitable energy management policy. Currently, electricity consumption is rapidly increasing due to the rise in human population and technology development. Therefore, in this study, we established a two-step methodology for residential building load prediction, which comprises two stages: in the first stage, the raw data of electricity consumption are refined for effective training; and the second step includes a hybrid model with the integration of convolutional neural network (CNN) and multilayer bidirectional gated recurrent unit (MB-GRU). The CNN layers are incorporated into the model as a feature extractor, while MB-GRU learns the sequences between electricity consumption data. The proposed model is evaluated using the root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE) metrics. Finally, our model is assessed over benchmark datasets that exhibited an extensive drop in the error rate in comparison to other techniques. The results indicated that the proposed model reduced errors over the individual household electricity consumption prediction (IHEPC) dataset (i.e., RMSE (5%), MSE (4%), and MAE (4%)), and for the appliances load prediction (AEP) dataset (i.e., RMSE (2%), and MAE (1%))." @default.
- W3107152034 created "2020-12-07" @default.
- W3107152034 creator A5028503461 @default.
- W3107152034 creator A5031936514 @default.
- W3107152034 creator A5044144622 @default.
- W3107152034 creator A5072407810 @default.
- W3107152034 creator A5073263477 @default.
- W3107152034 creator A5075042717 @default.
- W3107152034 date "2020-12-02" @default.
- W3107152034 modified "2023-10-04" @default.
- W3107152034 title "Electrical Energy Prediction in Residential Buildings for Short-Term Horizons Using Hybrid Deep Learning Strategy" @default.
- W3107152034 cites W1964984358 @default.
- W3107152034 cites W2008750647 @default.
- W3107152034 cites W2081733273 @default.
- W3107152034 cites W2083931742 @default.
- W3107152034 cites W2122646361 @default.
- W3107152034 cites W2122671960 @default.
- W3107152034 cites W2123007178 @default.
- W3107152034 cites W2131774270 @default.
- W3107152034 cites W2169337658 @default.
- W3107152034 cites W2172174166 @default.
- W3107152034 cites W2295959395 @default.
- W3107152034 cites W2341910059 @default.
- W3107152034 cites W2611761305 @default.
- W3107152034 cites W2743310439 @default.
- W3107152034 cites W2763128055 @default.
- W3107152034 cites W2767496852 @default.
- W3107152034 cites W2776741657 @default.
- W3107152034 cites W2805797750 @default.
- W3107152034 cites W2884001105 @default.
- W3107152034 cites W2889386826 @default.
- W3107152034 cites W2915736901 @default.
- W3107152034 cites W2917365054 @default.
- W3107152034 cites W2921022731 @default.
- W3107152034 cites W2936407162 @default.
- W3107152034 cites W2942779455 @default.
- W3107152034 cites W2948490758 @default.
- W3107152034 cites W2963558246 @default.
- W3107152034 cites W2963670497 @default.
- W3107152034 cites W2965516457 @default.
- W3107152034 cites W2972996383 @default.
- W3107152034 cites W2986815055 @default.
- W3107152034 cites W2990622714 @default.
- W3107152034 cites W2997861936 @default.
- W3107152034 cites W3004437308 @default.
- W3107152034 cites W3004492566 @default.
- W3107152034 cites W3008235510 @default.
- W3107152034 cites W3010192349 @default.
- W3107152034 cites W3043389165 @default.
- W3107152034 cites W3043685378 @default.
- W3107152034 cites W3046580686 @default.
- W3107152034 cites W3047269164 @default.
- W3107152034 cites W3077420696 @default.
- W3107152034 cites W3089728331 @default.
- W3107152034 cites W3094979069 @default.
- W3107152034 cites W3095648847 @default.
- W3107152034 cites W977807926 @default.
- W3107152034 doi "https://doi.org/10.3390/app10238634" @default.
- W3107152034 hasPublicationYear "2020" @default.
- W3107152034 type Work @default.
- W3107152034 sameAs 3107152034 @default.
- W3107152034 citedByCount "40" @default.
- W3107152034 countsByYear W31071520342021 @default.
- W3107152034 countsByYear W31071520342022 @default.
- W3107152034 countsByYear W31071520342023 @default.
- W3107152034 crossrefType "journal-article" @default.
- W3107152034 hasAuthorship W3107152034A5028503461 @default.
- W3107152034 hasAuthorship W3107152034A5031936514 @default.
- W3107152034 hasAuthorship W3107152034A5044144622 @default.
- W3107152034 hasAuthorship W3107152034A5072407810 @default.
- W3107152034 hasAuthorship W3107152034A5073263477 @default.
- W3107152034 hasAuthorship W3107152034A5075042717 @default.
- W3107152034 hasBestOaLocation W31071520341 @default.
- W3107152034 hasConcept C10558101 @default.
- W3107152034 hasConcept C105795698 @default.
- W3107152034 hasConcept C119599485 @default.
- W3107152034 hasConcept C124101348 @default.
- W3107152034 hasConcept C127413603 @default.
- W3107152034 hasConcept C139945424 @default.
- W3107152034 hasConcept C150217764 @default.
- W3107152034 hasConcept C154945302 @default.
- W3107152034 hasConcept C185798385 @default.
- W3107152034 hasConcept C188573790 @default.
- W3107152034 hasConcept C205649164 @default.
- W3107152034 hasConcept C206658404 @default.
- W3107152034 hasConcept C2780165032 @default.
- W3107152034 hasConcept C33923547 @default.
- W3107152034 hasConcept C41008148 @default.
- W3107152034 hasConcept C50644808 @default.
- W3107152034 hasConcept C58640448 @default.
- W3107152034 hasConcept C81363708 @default.
- W3107152034 hasConceptScore W3107152034C10558101 @default.
- W3107152034 hasConceptScore W3107152034C105795698 @default.
- W3107152034 hasConceptScore W3107152034C119599485 @default.
- W3107152034 hasConceptScore W3107152034C124101348 @default.
- W3107152034 hasConceptScore W3107152034C127413603 @default.
- W3107152034 hasConceptScore W3107152034C139945424 @default.
- W3107152034 hasConceptScore W3107152034C150217764 @default.