Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107186985> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3107186985 endingPage "149" @default.
- W3107186985 startingPage "130" @default.
- W3107186985 abstract "Class-modelling methods aim to predict the conformity of new unknown samples with a single target class, using statistical decision rules built exclusively with objects of that class. This article introduces a novel class-modelling method for spectral data. The method uses the concept of β%-prediction band for functional data to classify spectra. The band is defined by an upper and a lower limiting spectra which delimit critical trajectories for β% of future spectra of the target class. It is constructed in three main steps: firstly, a naïve bootstrap sample of calibration spectra is projected onto a parsimonious principal component (PC) basis and their scores are estimated. The posterior predictive distribution of the scores on each PC is estimated using a Bayesian zero-mean normal model. This procedure is repeated on naïve bootstrap estimations of the PCs to obtain the predictive distribution of the scores. These enable to account for all modelling uncertainties including the random deviation of scores from their zero-mean on each PC, uncertainty in the variance of scores (eigenvalue) on each PC, and uncertainty in the PC estimations. Secondly, the predicted scores are back-transformed to the original signal scale to obtain the predictive distribution of future spectra. Thirdly, the predicted spectra are ranked to select the β% most central ones as typical set, whose ranges of variation are used to construct the simultaneous limits of the band. Once the band is constructed, reconstructions of future unknown test spectra by bootstrap PC models are projected onto it, and the extent to which they overlap with it is used to decide their acceptance or rejection. The statistical properties and classification performances of the proposed prediction band are evaluated on real near-infrared datasets and compared to the well-known soft-independent modelling of class analogy (SIMCA) model. The results of the evaluation provide evidence that the proposed prediction band possesses satisfactory predictive performances. It even outperforms the SIMCA while offering attractive advantages like risk-management and straightforward physical interpretability of outlyingness patterns of tested spectra." @default.
- W3107186985 created "2020-12-07" @default.
- W3107186985 creator A5034817041 @default.
- W3107186985 creator A5038063185 @default.
- W3107186985 creator A5040689564 @default.
- W3107186985 creator A5066686362 @default.
- W3107186985 creator A5066968972 @default.
- W3107186985 date "2021-02-01" @default.
- W3107186985 modified "2023-09-25" @default.
- W3107186985 title "A probabilistic class-modelling method based on prediction bands for functional spectral data: Methodological approach and application to near-infrared spectroscopy" @default.
- W3107186985 cites W1494192115 @default.
- W3107186985 cites W181161799 @default.
- W3107186985 cites W1958754280 @default.
- W3107186985 cites W1972647763 @default.
- W3107186985 cites W1975600918 @default.
- W3107186985 cites W1980812683 @default.
- W3107186985 cites W1999935041 @default.
- W3107186985 cites W2010900439 @default.
- W3107186985 cites W2035269383 @default.
- W3107186985 cites W2045703397 @default.
- W3107186985 cites W2050623533 @default.
- W3107186985 cites W2065543520 @default.
- W3107186985 cites W2070330801 @default.
- W3107186985 cites W2085570173 @default.
- W3107186985 cites W2109606373 @default.
- W3107186985 cites W2122095984 @default.
- W3107186985 cites W2152826464 @default.
- W3107186985 cites W2267885623 @default.
- W3107186985 cites W2537787114 @default.
- W3107186985 cites W2617947411 @default.
- W3107186985 cites W2886101218 @default.
- W3107186985 cites W2963780177 @default.
- W3107186985 cites W3002188207 @default.
- W3107186985 cites W3010654271 @default.
- W3107186985 cites W3037531055 @default.
- W3107186985 doi "https://doi.org/10.1016/j.aca.2020.11.039" @default.
- W3107186985 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33453790" @default.
- W3107186985 hasPublicationYear "2021" @default.
- W3107186985 type Work @default.
- W3107186985 sameAs 3107186985 @default.
- W3107186985 citedByCount "4" @default.
- W3107186985 countsByYear W31071869852021 @default.
- W3107186985 countsByYear W31071869852022 @default.
- W3107186985 crossrefType "journal-article" @default.
- W3107186985 hasAuthorship W3107186985A5034817041 @default.
- W3107186985 hasAuthorship W3107186985A5038063185 @default.
- W3107186985 hasAuthorship W3107186985A5040689564 @default.
- W3107186985 hasAuthorship W3107186985A5066686362 @default.
- W3107186985 hasAuthorship W3107186985A5066968972 @default.
- W3107186985 hasConcept C105795698 @default.
- W3107186985 hasConcept C107673813 @default.
- W3107186985 hasConcept C11413529 @default.
- W3107186985 hasConcept C121332964 @default.
- W3107186985 hasConcept C1276947 @default.
- W3107186985 hasConcept C153180895 @default.
- W3107186985 hasConcept C154945302 @default.
- W3107186985 hasConcept C165838908 @default.
- W3107186985 hasConcept C22679943 @default.
- W3107186985 hasConcept C27438332 @default.
- W3107186985 hasConcept C33923547 @default.
- W3107186985 hasConcept C41008148 @default.
- W3107186985 hasConcept C4839761 @default.
- W3107186985 hasConceptScore W3107186985C105795698 @default.
- W3107186985 hasConceptScore W3107186985C107673813 @default.
- W3107186985 hasConceptScore W3107186985C11413529 @default.
- W3107186985 hasConceptScore W3107186985C121332964 @default.
- W3107186985 hasConceptScore W3107186985C1276947 @default.
- W3107186985 hasConceptScore W3107186985C153180895 @default.
- W3107186985 hasConceptScore W3107186985C154945302 @default.
- W3107186985 hasConceptScore W3107186985C165838908 @default.
- W3107186985 hasConceptScore W3107186985C22679943 @default.
- W3107186985 hasConceptScore W3107186985C27438332 @default.
- W3107186985 hasConceptScore W3107186985C33923547 @default.
- W3107186985 hasConceptScore W3107186985C41008148 @default.
- W3107186985 hasConceptScore W3107186985C4839761 @default.
- W3107186985 hasFunder F4320325905 @default.
- W3107186985 hasLocation W31071869851 @default.
- W3107186985 hasOpenAccess W3107186985 @default.
- W3107186985 hasPrimaryLocation W31071869851 @default.
- W3107186985 hasRelatedWork W2085553065 @default.
- W3107186985 hasRelatedWork W2093715904 @default.
- W3107186985 hasRelatedWork W2114966906 @default.
- W3107186985 hasRelatedWork W2157903613 @default.
- W3107186985 hasRelatedWork W2367227827 @default.
- W3107186985 hasRelatedWork W2380927352 @default.
- W3107186985 hasRelatedWork W3048981730 @default.
- W3107186985 hasRelatedWork W3178621026 @default.
- W3107186985 hasRelatedWork W4211209597 @default.
- W3107186985 hasRelatedWork W2137598809 @default.
- W3107186985 hasVolume "1144" @default.
- W3107186985 isParatext "false" @default.
- W3107186985 isRetracted "false" @default.
- W3107186985 magId "3107186985" @default.
- W3107186985 workType "article" @default.