Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107202282> ?p ?o ?g. }
- W3107202282 endingPage "221213" @default.
- W3107202282 startingPage "221203" @default.
- W3107202282 abstract "The prior covariance estimation method based on inverse covariance intersection (ICI) is proposed to apply the particle flow filter. The proposed method has better estimate performance and guarantees consistent estimation results compared with previous works. ICI is the recently developed method of ellipsoidal intersection and is used to get the combined estimate of prior covariance. This method integrates the sample covariance estimate, which is unbiased but usually with high variance, together with a more structured but typically a biased target covariance through fusion gains. For verifying the performance of the proposed algorithm, analysis and simulations are performed. Through the simulations, the results are given to illustrate the consistency and accuracy of the proposed algorithm's estimation and target tracking performance." @default.
- W3107202282 created "2020-12-07" @default.
- W3107202282 creator A5012069848 @default.
- W3107202282 creator A5063442064 @default.
- W3107202282 creator A5091744725 @default.
- W3107202282 date "2020-01-01" @default.
- W3107202282 modified "2023-09-24" @default.
- W3107202282 title "Data Fusion With Inverse Covariance Intersection for Prior Covariance Estimation of the Particle Flow Filter" @default.
- W3107202282 cites W116417043 @default.
- W3107202282 cites W1822984620 @default.
- W3107202282 cites W1970319972 @default.
- W3107202282 cites W1992747726 @default.
- W3107202282 cites W2002594585 @default.
- W3107202282 cites W2005850412 @default.
- W3107202282 cites W2022629036 @default.
- W3107202282 cites W2022905992 @default.
- W3107202282 cites W2026478216 @default.
- W3107202282 cites W2040196349 @default.
- W3107202282 cites W2040975855 @default.
- W3107202282 cites W2053257056 @default.
- W3107202282 cites W2062125287 @default.
- W3107202282 cites W2062758445 @default.
- W3107202282 cites W2076538312 @default.
- W3107202282 cites W2076840531 @default.
- W3107202282 cites W2085342124 @default.
- W3107202282 cites W2098613108 @default.
- W3107202282 cites W2099544223 @default.
- W3107202282 cites W2105738738 @default.
- W3107202282 cites W2116564195 @default.
- W3107202282 cites W2119792344 @default.
- W3107202282 cites W2121075403 @default.
- W3107202282 cites W2127929072 @default.
- W3107202282 cites W2148234182 @default.
- W3107202282 cites W2162733643 @default.
- W3107202282 cites W2503670596 @default.
- W3107202282 cites W2540670477 @default.
- W3107202282 cites W2593819095 @default.
- W3107202282 cites W2595744296 @default.
- W3107202282 cites W2834583499 @default.
- W3107202282 cites W2887972355 @default.
- W3107202282 cites W2906845871 @default.
- W3107202282 cites W2916432655 @default.
- W3107202282 cites W2920450711 @default.
- W3107202282 cites W2950381474 @default.
- W3107202282 cites W2954646001 @default.
- W3107202282 cites W3102869781 @default.
- W3107202282 cites W3124158341 @default.
- W3107202282 cites W4248761255 @default.
- W3107202282 cites W981525639 @default.
- W3107202282 doi "https://doi.org/10.1109/access.2020.3041928" @default.
- W3107202282 hasPublicationYear "2020" @default.
- W3107202282 type Work @default.
- W3107202282 sameAs 3107202282 @default.
- W3107202282 citedByCount "7" @default.
- W3107202282 countsByYear W31072022822021 @default.
- W3107202282 countsByYear W31072022822022 @default.
- W3107202282 countsByYear W31072022822023 @default.
- W3107202282 crossrefType "journal-article" @default.
- W3107202282 hasAuthorship W3107202282A5012069848 @default.
- W3107202282 hasAuthorship W3107202282A5063442064 @default.
- W3107202282 hasAuthorship W3107202282A5091744725 @default.
- W3107202282 hasBestOaLocation W31072022821 @default.
- W3107202282 hasConcept C105795698 @default.
- W3107202282 hasConcept C106131492 @default.
- W3107202282 hasConcept C11413529 @default.
- W3107202282 hasConcept C118006245 @default.
- W3107202282 hasConcept C127413603 @default.
- W3107202282 hasConcept C137250428 @default.
- W3107202282 hasConcept C146978453 @default.
- W3107202282 hasConcept C148893098 @default.
- W3107202282 hasConcept C154945302 @default.
- W3107202282 hasConcept C157286648 @default.
- W3107202282 hasConcept C178650346 @default.
- W3107202282 hasConcept C180877172 @default.
- W3107202282 hasConcept C185142706 @default.
- W3107202282 hasConcept C2776436953 @default.
- W3107202282 hasConcept C31972630 @default.
- W3107202282 hasConcept C33923547 @default.
- W3107202282 hasConcept C41008148 @default.
- W3107202282 hasConcept C52421305 @default.
- W3107202282 hasConcept C64543145 @default.
- W3107202282 hasConcept C83042196 @default.
- W3107202282 hasConceptScore W3107202282C105795698 @default.
- W3107202282 hasConceptScore W3107202282C106131492 @default.
- W3107202282 hasConceptScore W3107202282C11413529 @default.
- W3107202282 hasConceptScore W3107202282C118006245 @default.
- W3107202282 hasConceptScore W3107202282C127413603 @default.
- W3107202282 hasConceptScore W3107202282C137250428 @default.
- W3107202282 hasConceptScore W3107202282C146978453 @default.
- W3107202282 hasConceptScore W3107202282C148893098 @default.
- W3107202282 hasConceptScore W3107202282C154945302 @default.
- W3107202282 hasConceptScore W3107202282C157286648 @default.
- W3107202282 hasConceptScore W3107202282C178650346 @default.
- W3107202282 hasConceptScore W3107202282C180877172 @default.
- W3107202282 hasConceptScore W3107202282C185142706 @default.
- W3107202282 hasConceptScore W3107202282C2776436953 @default.
- W3107202282 hasConceptScore W3107202282C31972630 @default.
- W3107202282 hasConceptScore W3107202282C33923547 @default.