Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107232227> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3107232227 endingPage "7648" @default.
- W3107232227 startingPage "7638" @default.
- W3107232227 abstract "Achieving energy efficiency is always a primary concern for fog-architecture-based Internet of Things (IoT) applications. As the IoT devices are typically of small sizes and powered by battery energy, it is essential to address the energy consumption at all levels from the circuit to the system. Two of the promising solutions at circuit and system levels are approximate computing and energy-aware task allocation, respectively. However, the existing task allocation approaches are designed without considering the aspect of approximate computing. In this work, we fill this gap and aim to maximize the network lifetime subject to the accuracy requirements of the applications. By considering both the approximate computing and task allocation simultaneously, a nonlinear problem is obtained to allocate the tasks for the devices (fog nodes and IoT end devices) and to select the corresponding execution modes (tasks in approximate or exact modes). To efficiently solve this problem, a centralized algorithm is first proposed by transferring the above nonlinear problem as a linear programming (LP) problem. As executing the centralized algorithm is a challenge for the resource-limited IoT devices, this work further proposes an optimal distributed algorithm based on Dantzig-Wolfe decomposition to solve the problem of tasks distribution and execution modes selection. The centralized large-scaled LP problem is decomposed into small-scaled subproblems, which can be efficiently solved by each IoT device. The proposed algorithms are tested by extensive simulations. The results demonstrate that the distributed algorithm achieves the same results as the centralized algorithm, and both of them significantly outperform the previous approaches." @default.
- W3107232227 created "2020-12-07" @default.
- W3107232227 creator A5023155191 @default.
- W3107232227 creator A5050344559 @default.
- W3107232227 creator A5053339383 @default.
- W3107232227 creator A5058429956 @default.
- W3107232227 date "2021-05-01" @default.
- W3107232227 modified "2023-10-16" @default.
- W3107232227 title "Combination of Task Allocation and Approximate Computing for Fog-Architecture-Based IoT" @default.
- W3107232227 cites W2020480126 @default.
- W3107232227 cites W2105560970 @default.
- W3107232227 cites W2114786478 @default.
- W3107232227 cites W2160059864 @default.
- W3107232227 cites W2173299665 @default.
- W3107232227 cites W2508661730 @default.
- W3107232227 cites W2801205959 @default.
- W3107232227 cites W2801702941 @default.
- W3107232227 cites W2802295390 @default.
- W3107232227 cites W2808667664 @default.
- W3107232227 cites W2811107380 @default.
- W3107232227 cites W2905287427 @default.
- W3107232227 cites W2905503927 @default.
- W3107232227 cites W2906242844 @default.
- W3107232227 cites W2912921810 @default.
- W3107232227 cites W2917580194 @default.
- W3107232227 cites W2919017393 @default.
- W3107232227 cites W2920031528 @default.
- W3107232227 cites W2946729799 @default.
- W3107232227 cites W2980235527 @default.
- W3107232227 cites W2991450287 @default.
- W3107232227 cites W2994654853 @default.
- W3107232227 cites W2996942942 @default.
- W3107232227 cites W3000480525 @default.
- W3107232227 cites W3009804865 @default.
- W3107232227 cites W3022291517 @default.
- W3107232227 cites W3022500044 @default.
- W3107232227 cites W3032939875 @default.
- W3107232227 cites W3091557463 @default.
- W3107232227 cites W3033190354 @default.
- W3107232227 doi "https://doi.org/10.1109/jiot.2020.3040892" @default.
- W3107232227 hasPublicationYear "2021" @default.
- W3107232227 type Work @default.
- W3107232227 sameAs 3107232227 @default.
- W3107232227 citedByCount "4" @default.
- W3107232227 countsByYear W31072322272022 @default.
- W3107232227 countsByYear W31072322272023 @default.
- W3107232227 crossrefType "journal-article" @default.
- W3107232227 hasAuthorship W3107232227A5023155191 @default.
- W3107232227 hasAuthorship W3107232227A5050344559 @default.
- W3107232227 hasAuthorship W3107232227A5053339383 @default.
- W3107232227 hasAuthorship W3107232227A5058429956 @default.
- W3107232227 hasConcept C119599485 @default.
- W3107232227 hasConcept C120314980 @default.
- W3107232227 hasConcept C127413603 @default.
- W3107232227 hasConcept C162324750 @default.
- W3107232227 hasConcept C187736073 @default.
- W3107232227 hasConcept C18903297 @default.
- W3107232227 hasConcept C2742236 @default.
- W3107232227 hasConcept C2780165032 @default.
- W3107232227 hasConcept C2780451532 @default.
- W3107232227 hasConcept C29202148 @default.
- W3107232227 hasConcept C31258907 @default.
- W3107232227 hasConcept C41008148 @default.
- W3107232227 hasConcept C86803240 @default.
- W3107232227 hasConceptScore W3107232227C119599485 @default.
- W3107232227 hasConceptScore W3107232227C120314980 @default.
- W3107232227 hasConceptScore W3107232227C127413603 @default.
- W3107232227 hasConceptScore W3107232227C162324750 @default.
- W3107232227 hasConceptScore W3107232227C187736073 @default.
- W3107232227 hasConceptScore W3107232227C18903297 @default.
- W3107232227 hasConceptScore W3107232227C2742236 @default.
- W3107232227 hasConceptScore W3107232227C2780165032 @default.
- W3107232227 hasConceptScore W3107232227C2780451532 @default.
- W3107232227 hasConceptScore W3107232227C29202148 @default.
- W3107232227 hasConceptScore W3107232227C31258907 @default.
- W3107232227 hasConceptScore W3107232227C41008148 @default.
- W3107232227 hasConceptScore W3107232227C86803240 @default.
- W3107232227 hasIssue "9" @default.
- W3107232227 hasLocation W31072322271 @default.
- W3107232227 hasOpenAccess W3107232227 @default.
- W3107232227 hasPrimaryLocation W31072322271 @default.
- W3107232227 hasRelatedWork W1485627940 @default.
- W3107232227 hasRelatedWork W1596201972 @default.
- W3107232227 hasRelatedWork W1986253068 @default.
- W3107232227 hasRelatedWork W1996389316 @default.
- W3107232227 hasRelatedWork W2081647779 @default.
- W3107232227 hasRelatedWork W2152433827 @default.
- W3107232227 hasRelatedWork W2160425906 @default.
- W3107232227 hasRelatedWork W3008208197 @default.
- W3107232227 hasRelatedWork W4237750775 @default.
- W3107232227 hasRelatedWork W4283067488 @default.
- W3107232227 hasVolume "8" @default.
- W3107232227 isParatext "false" @default.
- W3107232227 isRetracted "false" @default.
- W3107232227 magId "3107232227" @default.
- W3107232227 workType "article" @default.