Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107248814> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3107248814 abstract "As George Bergman pointed out at the International Conference of Mathematicians in Vancouver (1974) category theory can be a very efficient way to determine all possible operations on sets. In fact, under certain conditions the operations on the values of a (representable) set valued functor are in one to one correspondence with the cooperations on the representing object and the relations that hold between those operations can be determined by analyzing the relations that hold between the cooperations on the representing object. In this thesis the ideas of Bergman described above together with the approaches described below are applied to the group of units of an arbitrary ring and the idempotent elements of commutative rings. Algebra, one of the oldest and still most popular branches of mathematics, is the study of algebraic structures. An algebraic structure, loosely speaking, is a object together with one or more operations on it. If there is more than one operation on the set these operations often satisfy certain relations. The class of objects which share certain properties is called a category. Some of the most common such categories consist of objects which posses an underlying set (e.g. groups, rings, fields, vector spaces). Often these sets can be regarded as members of different categories and accordingly are endowed with a number of operations between which relations hold. In the case that a particular object is part of different categories, one can try (more often than not successfully) to make use of certain facts that are true in one category to gain knowledge about other objects in the second category. One other approach to analyze algebraic structures is to look at their substructures (whether those lie within this category or in a different one) and gain knowledge about the original object by composing the pieces of the puzzle gained by analyzing the sub objects. Frequently the opposite approach works quite as well, i.e. to look at the objects which contain an object as subobjects." @default.
- W3107248814 created "2020-12-07" @default.
- W3107248814 creator A5081210687 @default.
- W3107248814 date "2020-11-24" @default.
- W3107248814 modified "2023-09-26" @default.
- W3107248814 title "Enriching representable functors" @default.
- W3107248814 doi "https://doi.org/10.31274/rtd-20201118-272" @default.
- W3107248814 hasPublicationYear "2020" @default.
- W3107248814 type Work @default.
- W3107248814 sameAs 3107248814 @default.
- W3107248814 citedByCount "0" @default.
- W3107248814 crossrefType "dissertation" @default.
- W3107248814 hasAuthorship W3107248814A5081210687 @default.
- W3107248814 hasBestOaLocation W31072488141 @default.
- W3107248814 hasConcept C13336665 @default.
- W3107248814 hasConcept C134306372 @default.
- W3107248814 hasConcept C136119220 @default.
- W3107248814 hasConcept C154945302 @default.
- W3107248814 hasConcept C156772000 @default.
- W3107248814 hasConcept C172252984 @default.
- W3107248814 hasConcept C177264268 @default.
- W3107248814 hasConcept C182419690 @default.
- W3107248814 hasConcept C183778304 @default.
- W3107248814 hasConcept C199360897 @default.
- W3107248814 hasConcept C202444582 @default.
- W3107248814 hasConcept C2777212361 @default.
- W3107248814 hasConcept C2781238097 @default.
- W3107248814 hasConcept C33923547 @default.
- W3107248814 hasConcept C41008148 @default.
- W3107248814 hasConcept C54884031 @default.
- W3107248814 hasConcept C9376300 @default.
- W3107248814 hasConceptScore W3107248814C13336665 @default.
- W3107248814 hasConceptScore W3107248814C134306372 @default.
- W3107248814 hasConceptScore W3107248814C136119220 @default.
- W3107248814 hasConceptScore W3107248814C154945302 @default.
- W3107248814 hasConceptScore W3107248814C156772000 @default.
- W3107248814 hasConceptScore W3107248814C172252984 @default.
- W3107248814 hasConceptScore W3107248814C177264268 @default.
- W3107248814 hasConceptScore W3107248814C182419690 @default.
- W3107248814 hasConceptScore W3107248814C183778304 @default.
- W3107248814 hasConceptScore W3107248814C199360897 @default.
- W3107248814 hasConceptScore W3107248814C202444582 @default.
- W3107248814 hasConceptScore W3107248814C2777212361 @default.
- W3107248814 hasConceptScore W3107248814C2781238097 @default.
- W3107248814 hasConceptScore W3107248814C33923547 @default.
- W3107248814 hasConceptScore W3107248814C41008148 @default.
- W3107248814 hasConceptScore W3107248814C54884031 @default.
- W3107248814 hasConceptScore W3107248814C9376300 @default.
- W3107248814 hasLocation W31072488141 @default.
- W3107248814 hasLocation W31072488142 @default.
- W3107248814 hasOpenAccess W3107248814 @default.
- W3107248814 hasPrimaryLocation W31072488141 @default.
- W3107248814 hasRelatedWork W1999357689 @default.
- W3107248814 hasRelatedWork W2038106543 @default.
- W3107248814 hasRelatedWork W2059434734 @default.
- W3107248814 hasRelatedWork W2523671480 @default.
- W3107248814 hasRelatedWork W283664946 @default.
- W3107248814 hasRelatedWork W2886364871 @default.
- W3107248814 hasRelatedWork W2968437274 @default.
- W3107248814 hasRelatedWork W4285600142 @default.
- W3107248814 hasRelatedWork W4302355942 @default.
- W3107248814 hasRelatedWork W4312527838 @default.
- W3107248814 isParatext "false" @default.
- W3107248814 isRetracted "false" @default.
- W3107248814 magId "3107248814" @default.
- W3107248814 workType "dissertation" @default.