Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107370737> ?p ?o ?g. }
- W3107370737 endingPage "125842" @default.
- W3107370737 startingPage "125842" @default.
- W3107370737 abstract "• This approach describes the non-monotonic change behavior of the extreme rainfall. • Spatial correlation amongst state estimates in regional analysis is considered. • State estimation for non-Gaussian variables in a nonlinear system is improved. • Performance degradation caused by inaccurate noises in UKF algorithm is reduced. In regional frequency analysis, extreme rainfall patterns in a nonstationary environment are characterized by the time-dependent regional growth curves, in which location and scale parameters are the weighted values of at-site estimates from the sites within a homogeneous group. However, under different climate change scenarios, the monotonic trend assumption about these two regional growth curve parameters can be questionable. To consider the non-monotonic change behavior of extreme rainfall events in regional frequency analysis, an unscented Kalman filter-based regional approach is proposed for location, scale and shape parameters estimation using the scaled datasets within a homogeneous group at different temporal states or periods. To consider nonlinear relationships for the parameters in state transition function (STF) and measurement function (MF) between sequential temporal periods, the unscented Kalman filter (UKF) is applied for the filtering of state estimates in the proposed methodology. To avoid the degradation of UKF performance which is caused by inaccurate state and measurement noise covariances, a Monte Carlo simulation-based procedure is proposed for their noise estimations. To reduce the parameter uncertainty associated with the distribution fitting process and consider the spatial correlations amongst the stations within a homogeneous group, balancing resamples are used to improve state estimates in regional frequency analysis. This UKF-based approach addresses the non-monotonic change behavior of the extreme rainfall events in a nonstationary environment, and fills the gap of considering spatial correlation for dynamic state estimation in regional frequency analysis. This proposed methodology was successfully applied to three homogeneous groups in Canada, and goodness-of-fit tests were used to validate the parameter estimates and prove the superiority over traditional covariate approach for providing effective rainfall quantile estimates in the upper tail of the distribution." @default.
- W3107370737 created "2020-12-07" @default.
- W3107370737 creator A5002053809 @default.
- W3107370737 date "2021-02-01" @default.
- W3107370737 modified "2023-10-18" @default.
- W3107370737 title "The unscented Kalman filter (UKF)-based algorithm for regional frequency analysis of extreme rainfall events in a nonstationary environment" @default.
- W3107370737 cites W1608273933 @default.
- W3107370737 cites W1887193019 @default.
- W3107370737 cites W1924873506 @default.
- W3107370737 cites W1973558423 @default.
- W3107370737 cites W1980366645 @default.
- W3107370737 cites W1985870758 @default.
- W3107370737 cites W1987308763 @default.
- W3107370737 cites W1991700921 @default.
- W3107370737 cites W1994470193 @default.
- W3107370737 cites W1995348800 @default.
- W3107370737 cites W1997429881 @default.
- W3107370737 cites W2001992171 @default.
- W3107370737 cites W2002087905 @default.
- W3107370737 cites W2003717430 @default.
- W3107370737 cites W2018314333 @default.
- W3107370737 cites W2022787571 @default.
- W3107370737 cites W2032182598 @default.
- W3107370737 cites W2052088229 @default.
- W3107370737 cites W2074786060 @default.
- W3107370737 cites W2081236418 @default.
- W3107370737 cites W2081597741 @default.
- W3107370737 cites W211103909 @default.
- W3107370737 cites W2111183161 @default.
- W3107370737 cites W2132344800 @default.
- W3107370737 cites W2132622866 @default.
- W3107370737 cites W2137784250 @default.
- W3107370737 cites W2139224138 @default.
- W3107370737 cites W2148650246 @default.
- W3107370737 cites W2156064084 @default.
- W3107370737 cites W2159689047 @default.
- W3107370737 cites W2175788649 @default.
- W3107370737 cites W2221510318 @default.
- W3107370737 cites W2318680928 @default.
- W3107370737 cites W2560553357 @default.
- W3107370737 cites W2591996318 @default.
- W3107370737 cites W2610088869 @default.
- W3107370737 cites W2746860478 @default.
- W3107370737 cites W2774498648 @default.
- W3107370737 cites W2792482170 @default.
- W3107370737 cites W4210616753 @default.
- W3107370737 doi "https://doi.org/10.1016/j.jhydrol.2020.125842" @default.
- W3107370737 hasPublicationYear "2021" @default.
- W3107370737 type Work @default.
- W3107370737 sameAs 3107370737 @default.
- W3107370737 citedByCount "4" @default.
- W3107370737 countsByYear W31073707372021 @default.
- W3107370737 countsByYear W31073707372022 @default.
- W3107370737 countsByYear W31073707372023 @default.
- W3107370737 crossrefType "journal-article" @default.
- W3107370737 hasAuthorship W3107370737A5002053809 @default.
- W3107370737 hasConcept C105795698 @default.
- W3107370737 hasConcept C11413529 @default.
- W3107370737 hasConcept C115961682 @default.
- W3107370737 hasConcept C121332964 @default.
- W3107370737 hasConcept C134306372 @default.
- W3107370737 hasConcept C139399703 @default.
- W3107370737 hasConcept C154945302 @default.
- W3107370737 hasConcept C157286648 @default.
- W3107370737 hasConcept C158622935 @default.
- W3107370737 hasConcept C205649164 @default.
- W3107370737 hasConcept C206833254 @default.
- W3107370737 hasConcept C2775924081 @default.
- W3107370737 hasConcept C2778755073 @default.
- W3107370737 hasConcept C33923547 @default.
- W3107370737 hasConcept C39432304 @default.
- W3107370737 hasConcept C41008148 @default.
- W3107370737 hasConcept C47446073 @default.
- W3107370737 hasConcept C58640448 @default.
- W3107370737 hasConcept C62520636 @default.
- W3107370737 hasConcept C72169020 @default.
- W3107370737 hasConcept C79334102 @default.
- W3107370737 hasConcept C99498987 @default.
- W3107370737 hasConceptScore W3107370737C105795698 @default.
- W3107370737 hasConceptScore W3107370737C11413529 @default.
- W3107370737 hasConceptScore W3107370737C115961682 @default.
- W3107370737 hasConceptScore W3107370737C121332964 @default.
- W3107370737 hasConceptScore W3107370737C134306372 @default.
- W3107370737 hasConceptScore W3107370737C139399703 @default.
- W3107370737 hasConceptScore W3107370737C154945302 @default.
- W3107370737 hasConceptScore W3107370737C157286648 @default.
- W3107370737 hasConceptScore W3107370737C158622935 @default.
- W3107370737 hasConceptScore W3107370737C205649164 @default.
- W3107370737 hasConceptScore W3107370737C206833254 @default.
- W3107370737 hasConceptScore W3107370737C2775924081 @default.
- W3107370737 hasConceptScore W3107370737C2778755073 @default.
- W3107370737 hasConceptScore W3107370737C33923547 @default.
- W3107370737 hasConceptScore W3107370737C39432304 @default.
- W3107370737 hasConceptScore W3107370737C41008148 @default.
- W3107370737 hasConceptScore W3107370737C47446073 @default.
- W3107370737 hasConceptScore W3107370737C58640448 @default.
- W3107370737 hasConceptScore W3107370737C62520636 @default.
- W3107370737 hasConceptScore W3107370737C72169020 @default.