Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107405098> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3107405098 abstract "Multi-user MIMO (MU-MIMO) is a key technology for current and next-generation wireless local area networks (WLANs). While it has widely been deployed in WLANs, its potential is not fully exploited in real-world systems. This can be attributed to the large airtime overhead induced by channel acquisition in existing MU-MIMO protocols, which significantly compromises the throughput gain of MU-MIMO. In this paper, we present LB-SciFi, a learning-based channel feedback framework for MU-MIMO in WLANs. LB-SciFi takes advantage of recent advances in deep neural network autoencoder (DNN-AE) to compress channel state information (CSI) in 802.11 protocols, thereby conserving airtime and improving spectral efficiency. The key component of LB-SciFi is an online DNN-AE training scheme, which allows an AP to train DNN-AEs by leveraging the side information of existing 802.11 protocols. With this training scheme, DNN-AEs are capable of significantly lowering the airtime overhead for MU-MIMO while preserving its backward compatibility with incumbent Wi-Fi client devices. We have implemented LB-SciFi on a wireless testbed and evaluated its performance in indoor wireless environments. Experimental results show that LB-SciFi offers an average of 73% airtime overhead reduction and increases network throughput by 69% on average when compared to 802.11 feedback protocols." @default.
- W3107405098 created "2020-12-07" @default.
- W3107405098 creator A5027120851 @default.
- W3107405098 creator A5028603956 @default.
- W3107405098 creator A5080296240 @default.
- W3107405098 creator A5082177050 @default.
- W3107405098 date "2020-10-13" @default.
- W3107405098 modified "2023-10-18" @default.
- W3107405098 title "LB-SciFi: Online Learning-Based Channel Feedback for MU-MIMO in Wireless LANs" @default.
- W3107405098 cites W1990676498 @default.
- W3107405098 cites W1992774725 @default.
- W3107405098 cites W1999162236 @default.
- W3107405098 cites W2044606692 @default.
- W3107405098 cites W2151949275 @default.
- W3107405098 cites W2324801794 @default.
- W3107405098 cites W2334458175 @default.
- W3107405098 cites W2747897719 @default.
- W3107405098 cites W2750570659 @default.
- W3107405098 cites W2755187910 @default.
- W3107405098 cites W2766855053 @default.
- W3107405098 cites W2796286107 @default.
- W3107405098 cites W2886124254 @default.
- W3107405098 cites W2890714386 @default.
- W3107405098 cites W2898970970 @default.
- W3107405098 cites W2901240584 @default.
- W3107405098 cites W2911910187 @default.
- W3107405098 cites W2914338909 @default.
- W3107405098 cites W2953889685 @default.
- W3107405098 cites W2962866638 @default.
- W3107405098 cites W2963145597 @default.
- W3107405098 cites W2967981090 @default.
- W3107405098 cites W2992306119 @default.
- W3107405098 cites W2997936696 @default.
- W3107405098 cites W2999917673 @default.
- W3107405098 cites W3003689553 @default.
- W3107405098 cites W3007196394 @default.
- W3107405098 cites W4255949318 @default.
- W3107405098 doi "https://doi.org/10.1109/icnp49622.2020.9259366" @default.
- W3107405098 hasPublicationYear "2020" @default.
- W3107405098 type Work @default.
- W3107405098 sameAs 3107405098 @default.
- W3107405098 citedByCount "8" @default.
- W3107405098 countsByYear W31074050982021 @default.
- W3107405098 countsByYear W31074050982022 @default.
- W3107405098 crossrefType "proceedings-article" @default.
- W3107405098 hasAuthorship W3107405098A5027120851 @default.
- W3107405098 hasAuthorship W3107405098A5028603956 @default.
- W3107405098 hasAuthorship W3107405098A5080296240 @default.
- W3107405098 hasAuthorship W3107405098A5082177050 @default.
- W3107405098 hasConcept C108037233 @default.
- W3107405098 hasConcept C111919701 @default.
- W3107405098 hasConcept C127162648 @default.
- W3107405098 hasConcept C137246740 @default.
- W3107405098 hasConcept C148063708 @default.
- W3107405098 hasConcept C157764524 @default.
- W3107405098 hasConcept C207987634 @default.
- W3107405098 hasConcept C2779960059 @default.
- W3107405098 hasConcept C31258907 @default.
- W3107405098 hasConcept C41008148 @default.
- W3107405098 hasConcept C555944384 @default.
- W3107405098 hasConcept C76155785 @default.
- W3107405098 hasConcept C91330434 @default.
- W3107405098 hasConceptScore W3107405098C108037233 @default.
- W3107405098 hasConceptScore W3107405098C111919701 @default.
- W3107405098 hasConceptScore W3107405098C127162648 @default.
- W3107405098 hasConceptScore W3107405098C137246740 @default.
- W3107405098 hasConceptScore W3107405098C148063708 @default.
- W3107405098 hasConceptScore W3107405098C157764524 @default.
- W3107405098 hasConceptScore W3107405098C207987634 @default.
- W3107405098 hasConceptScore W3107405098C2779960059 @default.
- W3107405098 hasConceptScore W3107405098C31258907 @default.
- W3107405098 hasConceptScore W3107405098C41008148 @default.
- W3107405098 hasConceptScore W3107405098C555944384 @default.
- W3107405098 hasConceptScore W3107405098C76155785 @default.
- W3107405098 hasConceptScore W3107405098C91330434 @default.
- W3107405098 hasLocation W31074050981 @default.
- W3107405098 hasOpenAccess W3107405098 @default.
- W3107405098 hasPrimaryLocation W31074050981 @default.
- W3107405098 hasRelatedWork W1500439066 @default.
- W3107405098 hasRelatedWork W2059045613 @default.
- W3107405098 hasRelatedWork W2134916061 @default.
- W3107405098 hasRelatedWork W2155567810 @default.
- W3107405098 hasRelatedWork W2542194775 @default.
- W3107405098 hasRelatedWork W2552025594 @default.
- W3107405098 hasRelatedWork W2588790930 @default.
- W3107405098 hasRelatedWork W4205696264 @default.
- W3107405098 hasRelatedWork W4381785485 @default.
- W3107405098 hasRelatedWork W884630482 @default.
- W3107405098 isParatext "false" @default.
- W3107405098 isRetracted "false" @default.
- W3107405098 magId "3107405098" @default.
- W3107405098 workType "article" @default.