Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107445668> ?p ?o ?g. }
- W3107445668 endingPage "358" @default.
- W3107445668 startingPage "342" @default.
- W3107445668 abstract "Summary Slickwater fracturing has become one of the most leveraging completion technologies in unlocking hydrocarbon in unconventional reservoirs. In slickwater treatments, proppant transport becomes a big concern because of the inefficiency of low-viscosity fluids to suspend the particles. Many studies have been devoted to proppant transport experimentally and numerically. However, only a few focused on the proppant pumping schedules in slickwater fracturing. The impact of proppant schedules on well production remains unclear. The goal of our work is to simulate the proppant transport under real pumping schedules (multisize proppants and varying concentration) at the field scale and quantitatively evaluate the effects of proppant schedules on well production for slickwater fracturing. The workflow consists of three steps. First, a validated 3D multiphase particle-in-cell (MP-PIC) model has been used to simulate the proppant transport at real pumping schedules in a field-scale fracture (180-m length, 30-m height). Second, we applied a propped fracture conductivity model to calculate the distribution of propped fracture width, permeability, and fracture conductivity. In the last step, we incorporated the fracture geometry, propped fracture conductivity, and the estimated unpropped fracture conductivity into a reservoir simulation model to predict gas production. Based on the field designs of pumping schedules in slickwater treatments, we have generated four proppant schedules, in which 100-mesh and 40/70-mesh proppants were loaded successively with stair-stepped and incremental stages. The first three were used to study the effects of the mass percentages of the multisize proppants. From Schedules 1 through 3, the mass percentage of 100-mesh proppants is 30, 50, and 70%, respectively. Schedule 4 has the same proppant percentage as Schedule 2 but has a flush stage after slurry injection. The comparison between Schedules 2 and 4 enables us to evaluate the effect of the flush stage on well production. The results indicate that the proppant schedule has a significant influence on treatment performance. The schedule with a higher percentage of 100-mesh proppants has a longer proppant transport distance, a larger propped fracture area, but a lower propped fracture conductivity. Then, the reservoir simulation results show that both the small and large percentages of 100-mesh proppants cannot maximize well production because of the corresponding small propped area and low propped fracture conductivity. Schedule 2, with a median percentage (50%) of 100-mesh proppants, has the highest 1,000-day cumulative gas production. For Schedule 4, the flush stage significantly benefits the gas production by 8.2% because of a longer and more uniform proppant bed along the fracture. In this paper, for the first time, we provide both the qualitative explanation and quantitative evaluation for the impact of proppant pumping schedules on the performance of slickwater treatments at the field scale by using an integrated numerical simulation workflow, providing crucial insights for the design of proppant schedules in the field slickwater treatments." @default.
- W3107445668 created "2020-12-07" @default.
- W3107445668 creator A5007340191 @default.
- W3107445668 creator A5020314073 @default.
- W3107445668 creator A5027942475 @default.
- W3107445668 creator A5028617759 @default.
- W3107445668 creator A5040621164 @default.
- W3107445668 creator A5069596466 @default.
- W3107445668 creator A5083358536 @default.
- W3107445668 date "2020-12-02" @default.
- W3107445668 modified "2023-10-15" @default.
- W3107445668 title "Impact of Proppant Pumping Schedule on Well Production for Slickwater Fracturing" @default.
- W3107445668 cites W1966231445 @default.
- W3107445668 cites W1971763418 @default.
- W3107445668 cites W1984343068 @default.
- W3107445668 cites W1987782744 @default.
- W3107445668 cites W1989983542 @default.
- W3107445668 cites W1991816677 @default.
- W3107445668 cites W1992774863 @default.
- W3107445668 cites W1996660791 @default.
- W3107445668 cites W2013994678 @default.
- W3107445668 cites W2024707445 @default.
- W3107445668 cites W2032306244 @default.
- W3107445668 cites W2032503188 @default.
- W3107445668 cites W2046150608 @default.
- W3107445668 cites W2047589209 @default.
- W3107445668 cites W2049735161 @default.
- W3107445668 cites W2054591452 @default.
- W3107445668 cites W2061600102 @default.
- W3107445668 cites W2069081160 @default.
- W3107445668 cites W2081203724 @default.
- W3107445668 cites W2084257319 @default.
- W3107445668 cites W2124192278 @default.
- W3107445668 cites W2164680563 @default.
- W3107445668 cites W2204209251 @default.
- W3107445668 cites W2358273878 @default.
- W3107445668 cites W2368469007 @default.
- W3107445668 cites W2512375282 @default.
- W3107445668 cites W2568353858 @default.
- W3107445668 cites W2586329322 @default.
- W3107445668 cites W2596390826 @default.
- W3107445668 cites W2775620888 @default.
- W3107445668 cites W2784037998 @default.
- W3107445668 cites W2790327244 @default.
- W3107445668 cites W2800365933 @default.
- W3107445668 cites W2809250211 @default.
- W3107445668 cites W2816510552 @default.
- W3107445668 cites W2909973912 @default.
- W3107445668 cites W2914648621 @default.
- W3107445668 cites W2915048377 @default.
- W3107445668 cites W2917023533 @default.
- W3107445668 cites W2922956605 @default.
- W3107445668 cites W2966910358 @default.
- W3107445668 cites W2970044034 @default.
- W3107445668 cites W2999123036 @default.
- W3107445668 cites W2999808392 @default.
- W3107445668 cites W3001676454 @default.
- W3107445668 cites W3004016786 @default.
- W3107445668 cites W3094801578 @default.
- W3107445668 cites W772231291 @default.
- W3107445668 doi "https://doi.org/10.2118/204235-pa" @default.
- W3107445668 hasPublicationYear "2020" @default.
- W3107445668 type Work @default.
- W3107445668 sameAs 3107445668 @default.
- W3107445668 citedByCount "29" @default.
- W3107445668 countsByYear W31074456682021 @default.
- W3107445668 countsByYear W31074456682022 @default.
- W3107445668 countsByYear W31074456682023 @default.
- W3107445668 crossrefType "journal-article" @default.
- W3107445668 hasAuthorship W3107445668A5007340191 @default.
- W3107445668 hasAuthorship W3107445668A5020314073 @default.
- W3107445668 hasAuthorship W3107445668A5027942475 @default.
- W3107445668 hasAuthorship W3107445668A5028617759 @default.
- W3107445668 hasAuthorship W3107445668A5040621164 @default.
- W3107445668 hasAuthorship W3107445668A5069596466 @default.
- W3107445668 hasAuthorship W3107445668A5083358536 @default.
- W3107445668 hasConcept C127313418 @default.
- W3107445668 hasConcept C131540310 @default.
- W3107445668 hasConcept C147789679 @default.
- W3107445668 hasConcept C159390177 @default.
- W3107445668 hasConcept C159750122 @default.
- W3107445668 hasConcept C185592680 @default.
- W3107445668 hasConcept C187320778 @default.
- W3107445668 hasConcept C192562407 @default.
- W3107445668 hasConcept C2779096232 @default.
- W3107445668 hasConcept C2779538338 @default.
- W3107445668 hasConcept C2994384808 @default.
- W3107445668 hasConcept C43369102 @default.
- W3107445668 hasConcept C63184880 @default.
- W3107445668 hasConcept C78762247 @default.
- W3107445668 hasConceptScore W3107445668C127313418 @default.
- W3107445668 hasConceptScore W3107445668C131540310 @default.
- W3107445668 hasConceptScore W3107445668C147789679 @default.
- W3107445668 hasConceptScore W3107445668C159390177 @default.
- W3107445668 hasConceptScore W3107445668C159750122 @default.
- W3107445668 hasConceptScore W3107445668C185592680 @default.
- W3107445668 hasConceptScore W3107445668C187320778 @default.
- W3107445668 hasConceptScore W3107445668C192562407 @default.