Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107480786> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3107480786 abstract "Natural gas is a kind of fossil fuel and itself is more suitable for reducing environmental pollution than the refined fuel oils such as gasoline(petrol) and diesel. Natural gas consumption is eco-friendly and is useful to fulfill energy demand for industries, transportation and other purposes. Myanmar is natural gas main producer in Asia and the majority of natural gas is exported to Thailand and China. In the near future, it is important to know the total consumption of natural gas for a country to fulfill the demand of country's needs. In this paper, Myanmar's natural gas final consumption will be predicted using Artificial Neural Networks(ANN). To predict natural gas final consumption for the coming years, actual recorded consumption data of Myanmar 1990-2015 are used. The last five years' data (2011-2015) are applied for testing and the previous years' data (1990-2010) are used for training. Population, gross domestic product(GDP), and other factors that affect natural gas final consumption are used as input for model building. The training model is strong with a minimum error rate of 0.005 Mean Squared Error (MSE). The developed ANN model is applied for the prediction of future natural gas consumption of Myanmar year by year. The proposed method is effective to predict Myanmar's natural gas final consumption and is useful in the studies of energy policy and ecological quality." @default.
- W3107480786 created "2020-12-07" @default.
- W3107480786 creator A5017249288 @default.
- W3107480786 creator A5089178600 @default.
- W3107480786 date "2020-11-04" @default.
- W3107480786 modified "2023-09-27" @default.
- W3107480786 title "Prediction of Natural Gas Final Consumption using Artificial Neural Networks" @default.
- W3107480786 cites W2020995787 @default.
- W3107480786 cites W2624108541 @default.
- W3107480786 cites W2783603328 @default.
- W3107480786 doi "https://doi.org/10.1109/icait51105.2020.9261813" @default.
- W3107480786 hasPublicationYear "2020" @default.
- W3107480786 type Work @default.
- W3107480786 sameAs 3107480786 @default.
- W3107480786 citedByCount "2" @default.
- W3107480786 countsByYear W31074807862020 @default.
- W3107480786 countsByYear W31074807862021 @default.
- W3107480786 crossrefType "proceedings-article" @default.
- W3107480786 hasAuthorship W3107480786A5017249288 @default.
- W3107480786 hasAuthorship W3107480786A5089178600 @default.
- W3107480786 hasConcept C103697071 @default.
- W3107480786 hasConcept C114350782 @default.
- W3107480786 hasConcept C119599485 @default.
- W3107480786 hasConcept C127413603 @default.
- W3107480786 hasConcept C134560507 @default.
- W3107480786 hasConcept C138171918 @default.
- W3107480786 hasConcept C144024400 @default.
- W3107480786 hasConcept C154945302 @default.
- W3107480786 hasConcept C162324750 @default.
- W3107480786 hasConcept C2780165032 @default.
- W3107480786 hasConcept C2992367939 @default.
- W3107480786 hasConcept C30772137 @default.
- W3107480786 hasConcept C36289849 @default.
- W3107480786 hasConcept C39432304 @default.
- W3107480786 hasConcept C41008148 @default.
- W3107480786 hasConcept C50522688 @default.
- W3107480786 hasConcept C50644808 @default.
- W3107480786 hasConcept C548081761 @default.
- W3107480786 hasConcept C59427239 @default.
- W3107480786 hasConcept C68189081 @default.
- W3107480786 hasConcept C78762247 @default.
- W3107480786 hasConceptScore W3107480786C103697071 @default.
- W3107480786 hasConceptScore W3107480786C114350782 @default.
- W3107480786 hasConceptScore W3107480786C119599485 @default.
- W3107480786 hasConceptScore W3107480786C127413603 @default.
- W3107480786 hasConceptScore W3107480786C134560507 @default.
- W3107480786 hasConceptScore W3107480786C138171918 @default.
- W3107480786 hasConceptScore W3107480786C144024400 @default.
- W3107480786 hasConceptScore W3107480786C154945302 @default.
- W3107480786 hasConceptScore W3107480786C162324750 @default.
- W3107480786 hasConceptScore W3107480786C2780165032 @default.
- W3107480786 hasConceptScore W3107480786C2992367939 @default.
- W3107480786 hasConceptScore W3107480786C30772137 @default.
- W3107480786 hasConceptScore W3107480786C36289849 @default.
- W3107480786 hasConceptScore W3107480786C39432304 @default.
- W3107480786 hasConceptScore W3107480786C41008148 @default.
- W3107480786 hasConceptScore W3107480786C50522688 @default.
- W3107480786 hasConceptScore W3107480786C50644808 @default.
- W3107480786 hasConceptScore W3107480786C548081761 @default.
- W3107480786 hasConceptScore W3107480786C59427239 @default.
- W3107480786 hasConceptScore W3107480786C68189081 @default.
- W3107480786 hasConceptScore W3107480786C78762247 @default.
- W3107480786 hasLocation W31074807861 @default.
- W3107480786 hasOpenAccess W3107480786 @default.
- W3107480786 hasPrimaryLocation W31074807861 @default.
- W3107480786 hasRelatedWork W2037801628 @default.
- W3107480786 hasRelatedWork W2363129599 @default.
- W3107480786 hasRelatedWork W2502168120 @default.
- W3107480786 hasRelatedWork W2766662211 @default.
- W3107480786 hasRelatedWork W2812422760 @default.
- W3107480786 hasRelatedWork W2921198291 @default.
- W3107480786 hasRelatedWork W3122328634 @default.
- W3107480786 hasRelatedWork W3196078674 @default.
- W3107480786 hasRelatedWork W4290997474 @default.
- W3107480786 hasRelatedWork W2114070513 @default.
- W3107480786 isParatext "false" @default.
- W3107480786 isRetracted "false" @default.
- W3107480786 magId "3107480786" @default.
- W3107480786 workType "article" @default.