Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107517498> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3107517498 endingPage "682" @default.
- W3107517498 startingPage "675" @default.
- W3107517498 abstract "Abstract The use of technology and planning in agricultural production is essential in Northeastern Brazil, which is the region of the country that most suffers from water shortage. For the best irrigation management, it is necessary to know the potential evapotranspiration rate for water control in order to increase productivity. There are several direct and indirect methods for estimating evapotranspiration, but the standard method recommended by the United Nations Agriculture Organization (FAO) is the Penman-Monteith (PETpm) method because it has higher accuracy than other methods. However, it is a difficult method to be used due to the need for a large number of meteorological elements. In this context, the objective of this study was to estimate potential evapotranspiration by the Penman-Monteith method in the micro-region of Baixo Parnaíba in Maranhão state using artificial neural networks. Agro-meteorological data were collected daily over 34 years, from 1984 to 2017, and these data were obtained from the NASA/POWER website. Subsequently, liquid radiation and potential evapotranspiration were calculated by the Penman-Monteith standard method (1998). To predict potential daily evapotranspiration, the Multi-Layer Perceptron (MLP) was chosen, which is a traditional Artificial Neural Network. The period that presented a higher evapotranspiration index was the same one that showed precipitation with a lower volume and higher temperatures. The artificial neural network model that best adapted to estimate PETpm was MLP 2-5-1. It is concluded that artificial neural networks estimate with accuracy and precision the Penman-Monteith daily potential evapotranspiration of the Lower Parnaiba in Maranhão, and potential evapotranspiration can be estimated by the Penman-Monteith method using neural networks with inputs of air temperatures." @default.
- W3107517498 created "2020-12-07" @default.
- W3107517498 creator A5006179489 @default.
- W3107517498 creator A5013818547 @default.
- W3107517498 creator A5033499115 @default.
- W3107517498 creator A5036062545 @default.
- W3107517498 date "2020-12-01" @default.
- W3107517498 modified "2023-10-02" @default.
- W3107517498 title "Estimating Potential Evapotranspiration in Maranhão State Using Artificial Neural Networks" @default.
- W3107517498 cites W1812453514 @default.
- W3107517498 cites W2074094998 @default.
- W3107517498 cites W2126527218 @default.
- W3107517498 cites W2273322351 @default.
- W3107517498 doi "https://doi.org/10.1590/0102-77863540072" @default.
- W3107517498 hasPublicationYear "2020" @default.
- W3107517498 type Work @default.
- W3107517498 sameAs 3107517498 @default.
- W3107517498 citedByCount "1" @default.
- W3107517498 countsByYear W31075174982023 @default.
- W3107517498 crossrefType "journal-article" @default.
- W3107517498 hasAuthorship W3107517498A5006179489 @default.
- W3107517498 hasAuthorship W3107517498A5013818547 @default.
- W3107517498 hasAuthorship W3107517498A5033499115 @default.
- W3107517498 hasAuthorship W3107517498A5036062545 @default.
- W3107517498 hasBestOaLocation W31075174981 @default.
- W3107517498 hasConcept C119857082 @default.
- W3107517498 hasConcept C153294291 @default.
- W3107517498 hasConcept C166957645 @default.
- W3107517498 hasConcept C176783924 @default.
- W3107517498 hasConcept C179717631 @default.
- W3107517498 hasConcept C18903297 @default.
- W3107517498 hasConcept C205649164 @default.
- W3107517498 hasConcept C2779343474 @default.
- W3107517498 hasConcept C39432304 @default.
- W3107517498 hasConcept C41008148 @default.
- W3107517498 hasConcept C50644808 @default.
- W3107517498 hasConcept C60908668 @default.
- W3107517498 hasConcept C86803240 @default.
- W3107517498 hasConceptScore W3107517498C119857082 @default.
- W3107517498 hasConceptScore W3107517498C153294291 @default.
- W3107517498 hasConceptScore W3107517498C166957645 @default.
- W3107517498 hasConceptScore W3107517498C176783924 @default.
- W3107517498 hasConceptScore W3107517498C179717631 @default.
- W3107517498 hasConceptScore W3107517498C18903297 @default.
- W3107517498 hasConceptScore W3107517498C205649164 @default.
- W3107517498 hasConceptScore W3107517498C2779343474 @default.
- W3107517498 hasConceptScore W3107517498C39432304 @default.
- W3107517498 hasConceptScore W3107517498C41008148 @default.
- W3107517498 hasConceptScore W3107517498C50644808 @default.
- W3107517498 hasConceptScore W3107517498C60908668 @default.
- W3107517498 hasConceptScore W3107517498C86803240 @default.
- W3107517498 hasIssue "4" @default.
- W3107517498 hasLocation W31075174981 @default.
- W3107517498 hasLocation W31075174982 @default.
- W3107517498 hasLocation W31075174983 @default.
- W3107517498 hasOpenAccess W3107517498 @default.
- W3107517498 hasPrimaryLocation W31075174981 @default.
- W3107517498 hasRelatedWork W1501774291 @default.
- W3107517498 hasRelatedWork W1551818188 @default.
- W3107517498 hasRelatedWork W1987886632 @default.
- W3107517498 hasRelatedWork W2025643150 @default.
- W3107517498 hasRelatedWork W2730581894 @default.
- W3107517498 hasRelatedWork W2890929759 @default.
- W3107517498 hasRelatedWork W2965383708 @default.
- W3107517498 hasRelatedWork W3042796155 @default.
- W3107517498 hasRelatedWork W3158157485 @default.
- W3107517498 hasRelatedWork W2276110787 @default.
- W3107517498 hasVolume "35" @default.
- W3107517498 isParatext "false" @default.
- W3107517498 isRetracted "false" @default.
- W3107517498 magId "3107517498" @default.
- W3107517498 workType "article" @default.