Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107789206> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3107789206 abstract "ABSTRACT. This study aimed to analyze 70 years historical series in the Brazilian Southeastern region, using monthly rainfall data. Statistical modeling techniques such as cross-wavelet spectra and artificial neural networks (ANN), from the R statistical package, were used to perform the analyses. Two different types of neural networks were employed: the multi-layer perceptron (MLP) and extreme learning machine (ELM). From the cited time series, the analysis shows the existence of a decadal and multi-decadal signal with cycles of 5, 11, and 22 years in the monthly rainfall in Brazilian Southeastern region, observing the existence of low-frequency variability. This shows a significant degree of modulation and association for the precipitation with solar activity. The neural networks were also used as forecasting tools, with a better performance for MLP-NN – smaller root mean square error. However, the MLP-NN presented a greater confidence interval than ELM-NN.Keywords: monthly rainfall, sunspots, multi-decadal cycles.Observando a Existência de Variabilidade de Baixa Frequência em Dados Mensais de Chuva no Sudeste do Brasil utilizando Ferramentas do Aplicativo R - Redes Neurais e OndeletasRESUMO. Este estudo teve como objetivo analisar séries históricas de 70 anos no sudeste do Brasil, utilizando dados mensais de precipitação. Técnicas de análise estatística usando o pacote estatístico R, como espectros de wavelet cruzado e modelagem de redes neurais artificiais (RNA), foram usadas para realizar as análises. Duas implementações de redes neurais foram empregadas: multi-layer perceptron (MLP) e extreme learning machine (ELM). Os resultados obtidos nas análises realizadas permitem inferir que as séries temporais observadas mostram a existência de um sinal decenal e multi-decenal com ciclos de 5, 11 e 22 anos na precipitação mensal no sudeste do Brasil, observando a existência de variabilidade de baixa frequência nos dados analisados. Isso mostra um grau significativo de modulação e associação da precipitação com a atividade solar. A análise de séries temporais longas permitem a observação de variabilidades de baixa frequência, evidenciando sua grande importância e relevância. Uma significativa parcela da variância total de ciclos atmosféricos decenais é modulado pela atividade solar. As redes neurais também foram usadas como ferramentas de previsão, com melhor desempenho para a rede MLP – como mostrado pelo erro médio quadrático. A rede MLP apresentou maior amplitude no intervalor de confiança do que a rede ELM.Palavras-chave: precipitação mensal, manchas solares, ciclos multi-decenais." @default.
- W3107789206 created "2020-12-07" @default.
- W3107789206 creator A5055768874 @default.
- W3107789206 creator A5063432985 @default.
- W3107789206 date "2020-06-23" @default.
- W3107789206 modified "2023-09-23" @default.
- W3107789206 title "Observing the Existence of Low-Frequency Variability in Monthly Rainfall Data at Southeastern Brazil using R Package Tools – Neural Networks and Wavelet" @default.
- W3107789206 cites W1580617008 @default.
- W3107789206 cites W1607293439 @default.
- W3107789206 cites W1872800447 @default.
- W3107789206 cites W1895301057 @default.
- W3107789206 cites W1964226176 @default.
- W3107789206 cites W1970648885 @default.
- W3107789206 cites W1977177161 @default.
- W3107789206 cites W1977971109 @default.
- W3107789206 cites W1994987090 @default.
- W3107789206 cites W2001862744 @default.
- W3107789206 cites W2007327818 @default.
- W3107789206 cites W2008313676 @default.
- W3107789206 cites W2016058895 @default.
- W3107789206 cites W2016210396 @default.
- W3107789206 cites W2021725448 @default.
- W3107789206 cites W2038079786 @default.
- W3107789206 cites W2048418383 @default.
- W3107789206 cites W2063048380 @default.
- W3107789206 cites W2076063813 @default.
- W3107789206 cites W2087563725 @default.
- W3107789206 cites W2093132633 @default.
- W3107789206 cites W2103042981 @default.
- W3107789206 cites W2109008909 @default.
- W3107789206 cites W2111072639 @default.
- W3107789206 cites W2116216267 @default.
- W3107789206 cites W2116413045 @default.
- W3107789206 cites W2124459709 @default.
- W3107789206 cites W2129451521 @default.
- W3107789206 cites W2131534673 @default.
- W3107789206 cites W2139821670 @default.
- W3107789206 cites W2149905014 @default.
- W3107789206 cites W2170068458 @default.
- W3107789206 cites W2180833990 @default.
- W3107789206 cites W2278125060 @default.
- W3107789206 cites W2569479697 @default.
- W3107789206 cites W2890841897 @default.
- W3107789206 cites W2935928805 @default.
- W3107789206 cites W3011250663 @default.
- W3107789206 cites W587234514 @default.
- W3107789206 doi "https://doi.org/10.22564/rbgf.v38i2.2046" @default.
- W3107789206 hasPublicationYear "2020" @default.
- W3107789206 type Work @default.
- W3107789206 sameAs 3107789206 @default.
- W3107789206 citedByCount "0" @default.
- W3107789206 crossrefType "journal-article" @default.
- W3107789206 hasAuthorship W3107789206A5055768874 @default.
- W3107789206 hasAuthorship W3107789206A5063432985 @default.
- W3107789206 hasBestOaLocation W31077892061 @default.
- W3107789206 hasConcept C154945302 @default.
- W3107789206 hasConcept C179717631 @default.
- W3107789206 hasConcept C2780150128 @default.
- W3107789206 hasConcept C41008148 @default.
- W3107789206 hasConcept C47432892 @default.
- W3107789206 hasConcept C50644808 @default.
- W3107789206 hasConcept C60908668 @default.
- W3107789206 hasConceptScore W3107789206C154945302 @default.
- W3107789206 hasConceptScore W3107789206C179717631 @default.
- W3107789206 hasConceptScore W3107789206C2780150128 @default.
- W3107789206 hasConceptScore W3107789206C41008148 @default.
- W3107789206 hasConceptScore W3107789206C47432892 @default.
- W3107789206 hasConceptScore W3107789206C50644808 @default.
- W3107789206 hasConceptScore W3107789206C60908668 @default.
- W3107789206 hasLocation W31077892061 @default.
- W3107789206 hasLocation W31077892062 @default.
- W3107789206 hasLocation W31077892063 @default.
- W3107789206 hasOpenAccess W3107789206 @default.
- W3107789206 hasPrimaryLocation W31077892061 @default.
- W3107789206 hasRelatedWork W12335511 @default.
- W3107789206 hasRelatedWork W13076802 @default.
- W3107789206 hasRelatedWork W13426584 @default.
- W3107789206 hasRelatedWork W13525404 @default.
- W3107789206 hasRelatedWork W1383942 @default.
- W3107789206 hasRelatedWork W2401797 @default.
- W3107789206 hasRelatedWork W7283634 @default.
- W3107789206 hasRelatedWork W7285770 @default.
- W3107789206 hasRelatedWork W776799 @default.
- W3107789206 hasRelatedWork W8636990 @default.
- W3107789206 isParatext "false" @default.
- W3107789206 isRetracted "false" @default.
- W3107789206 magId "3107789206" @default.
- W3107789206 workType "article" @default.