Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107802241> ?p ?o ?g. }
- W3107802241 endingPage "100010" @default.
- W3107802241 startingPage "100010" @default.
- W3107802241 abstract "Recent studies show that the adsorption energy can be used as a descriptor of the catalytic activity in methane direct conversion. We develop Gaussian process regression models to predict DFT-calculated adsorption energies of CH4 related species – CH3 , CH2, CH, C, and H – on Cu-based alloys from elements’ readily available physical properties. As compared to conventional first-principle-based methods, the models are simple and fast to implement. They produce predictions with root mean squared errors of below 0.15 eV. The models also present numerical and statistical relationships between fundamental physiochemical parameters of doped elements and adsorption energies. Hence, they might be considered as efficient alternatives to the DFT approach for adsorption energy calculations, which allow for further assessments of certain solid catalysts’ catalytic performance." @default.
- W3107802241 created "2020-12-07" @default.
- W3107802241 creator A5019106763 @default.
- W3107802241 creator A5023874610 @default.
- W3107802241 date "2021-03-01" @default.
- W3107802241 modified "2023-10-16" @default.
- W3107802241 title "Predictions of adsorption energies of methane-related species on Cu-based alloys through machine learning" @default.
- W3107802241 cites W1528588768 @default.
- W3107802241 cites W1966742924 @default.
- W3107802241 cites W1977956754 @default.
- W3107802241 cites W1991630775 @default.
- W3107802241 cites W2007135038 @default.
- W3107802241 cites W2016366655 @default.
- W3107802241 cites W2037757446 @default.
- W3107802241 cites W2063402276 @default.
- W3107802241 cites W2063910422 @default.
- W3107802241 cites W2088400298 @default.
- W3107802241 cites W2143844135 @default.
- W3107802241 cites W2262215104 @default.
- W3107802241 cites W2330579778 @default.
- W3107802241 cites W2524322448 @default.
- W3107802241 cites W2746371905 @default.
- W3107802241 cites W2760260346 @default.
- W3107802241 cites W2789575256 @default.
- W3107802241 cites W2799567665 @default.
- W3107802241 cites W2899587329 @default.
- W3107802241 cites W2917519917 @default.
- W3107802241 cites W2945964866 @default.
- W3107802241 cites W2996448308 @default.
- W3107802241 cites W3010924749 @default.
- W3107802241 cites W3013214415 @default.
- W3107802241 cites W3013883371 @default.
- W3107802241 cites W3016349848 @default.
- W3107802241 cites W3017318366 @default.
- W3107802241 cites W3019862202 @default.
- W3107802241 cites W3023699398 @default.
- W3107802241 cites W3030252899 @default.
- W3107802241 cites W3030855368 @default.
- W3107802241 cites W3036065630 @default.
- W3107802241 cites W3082090128 @default.
- W3107802241 cites W3082271024 @default.
- W3107802241 cites W3082944422 @default.
- W3107802241 cites W3084459653 @default.
- W3107802241 cites W3088297452 @default.
- W3107802241 cites W3092573217 @default.
- W3107802241 cites W3093650100 @default.
- W3107802241 cites W3098348909 @default.
- W3107802241 cites W3105925691 @default.
- W3107802241 cites W3105977246 @default.
- W3107802241 cites W3108333826 @default.
- W3107802241 doi "https://doi.org/10.1016/j.mlwa.2020.100010" @default.
- W3107802241 hasPublicationYear "2021" @default.
- W3107802241 type Work @default.
- W3107802241 sameAs 3107802241 @default.
- W3107802241 citedByCount "20" @default.
- W3107802241 countsByYear W31078022412020 @default.
- W3107802241 countsByYear W31078022412021 @default.
- W3107802241 countsByYear W31078022412022 @default.
- W3107802241 countsByYear W31078022412023 @default.
- W3107802241 crossrefType "journal-article" @default.
- W3107802241 hasAuthorship W3107802241A5019106763 @default.
- W3107802241 hasAuthorship W3107802241A5023874610 @default.
- W3107802241 hasBestOaLocation W31078022411 @default.
- W3107802241 hasConcept C105795698 @default.
- W3107802241 hasConcept C121332964 @default.
- W3107802241 hasConcept C121864883 @default.
- W3107802241 hasConcept C147597530 @default.
- W3107802241 hasConcept C147789679 @default.
- W3107802241 hasConcept C150394285 @default.
- W3107802241 hasConcept C161790260 @default.
- W3107802241 hasConcept C163716315 @default.
- W3107802241 hasConcept C178790620 @default.
- W3107802241 hasConcept C185592680 @default.
- W3107802241 hasConcept C186060115 @default.
- W3107802241 hasConcept C186370098 @default.
- W3107802241 hasConcept C192562407 @default.
- W3107802241 hasConcept C33923547 @default.
- W3107802241 hasConcept C516920438 @default.
- W3107802241 hasConcept C86803240 @default.
- W3107802241 hasConcept C97355855 @default.
- W3107802241 hasConceptScore W3107802241C105795698 @default.
- W3107802241 hasConceptScore W3107802241C121332964 @default.
- W3107802241 hasConceptScore W3107802241C121864883 @default.
- W3107802241 hasConceptScore W3107802241C147597530 @default.
- W3107802241 hasConceptScore W3107802241C147789679 @default.
- W3107802241 hasConceptScore W3107802241C150394285 @default.
- W3107802241 hasConceptScore W3107802241C161790260 @default.
- W3107802241 hasConceptScore W3107802241C163716315 @default.
- W3107802241 hasConceptScore W3107802241C178790620 @default.
- W3107802241 hasConceptScore W3107802241C185592680 @default.
- W3107802241 hasConceptScore W3107802241C186060115 @default.
- W3107802241 hasConceptScore W3107802241C186370098 @default.
- W3107802241 hasConceptScore W3107802241C192562407 @default.
- W3107802241 hasConceptScore W3107802241C33923547 @default.
- W3107802241 hasConceptScore W3107802241C516920438 @default.
- W3107802241 hasConceptScore W3107802241C86803240 @default.
- W3107802241 hasConceptScore W3107802241C97355855 @default.
- W3107802241 hasLocation W31078022411 @default.