Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107881036> ?p ?o ?g. }
- W3107881036 endingPage "211505" @default.
- W3107881036 startingPage "211490" @default.
- W3107881036 abstract "The large-scale penetration of renewable energy sources is forcing the transition towards the future electricity networks modeled on the smart grid paradigm, where energy clusters call for new methodologies for the dynamic energy management of distributed energy resources and foster to form partnerships and overcome integration barriers. The prediction of energy production of renewable energy sources, in particular photovoltaic plants that suffer from being highly intermittent, is a fundamental tool in the modern management of electrical grids shifting from reactive to proactive, with also the help of advanced monitoring systems, data analytics and advanced demand side management programs. The gradual move towards a smart grid environment impacts not only the operating control/management of the grid, but also the electricity market. The focus of this article is on advanced methods for predicting photovoltaic energy output that prove, through their accuracy and robustness, to be useful tools for an efficient system management, even at prosumer's level and for improving the resilience of smart grids. Four different deep neural models for the multivariate prediction of energy time series are proposed; all of them are based on the Long Short-Term Memory network, which is a type of recurrent neural network able to deal with long-term dependencies. Additionally, two of these models also use Convolutional Neural Networks to obtain higher levels of abstraction, since they allow to combine and filter different time series considering all the available information. The proposed models are applied to real-world energy problems to assess their performance and they are compared with respect to the classic univariate approach that is used as a reference benchmark. The significance of this work is to show that, once trained, the proposed deep neural networks ensure their applicability in real online scenarios characterized by high variability of data, without requiring retraining and end-user's tricks." @default.
- W3107881036 created "2020-12-07" @default.
- W3107881036 creator A5015796693 @default.
- W3107881036 creator A5050693707 @default.
- W3107881036 creator A5052397999 @default.
- W3107881036 creator A5079047498 @default.
- W3107881036 date "2020-01-01" @default.
- W3107881036 modified "2023-10-16" @default.
- W3107881036 title "Deep Neural Networks for Multivariate Prediction of Photovoltaic Power Time Series" @default.
- W3107881036 cites W1979280020 @default.
- W3107881036 cites W1983113304 @default.
- W3107881036 cites W2026844045 @default.
- W3107881036 cites W2031939255 @default.
- W3107881036 cites W2033406960 @default.
- W3107881036 cites W2041025830 @default.
- W3107881036 cites W2068844879 @default.
- W3107881036 cites W2079547580 @default.
- W3107881036 cites W2088786192 @default.
- W3107881036 cites W2107878631 @default.
- W3107881036 cites W2115294291 @default.
- W3107881036 cites W2143612262 @default.
- W3107881036 cites W2144475095 @default.
- W3107881036 cites W2145509823 @default.
- W3107881036 cites W2163605009 @default.
- W3107881036 cites W2223222085 @default.
- W3107881036 cites W2286688639 @default.
- W3107881036 cites W2292644333 @default.
- W3107881036 cites W2315665465 @default.
- W3107881036 cites W2346227481 @default.
- W3107881036 cites W2402682637 @default.
- W3107881036 cites W2413982009 @default.
- W3107881036 cites W2469734051 @default.
- W3107881036 cites W2515994287 @default.
- W3107881036 cites W2523187446 @default.
- W3107881036 cites W2536837370 @default.
- W3107881036 cites W2587586954 @default.
- W3107881036 cites W2599124251 @default.
- W3107881036 cites W2605962227 @default.
- W3107881036 cites W2610219179 @default.
- W3107881036 cites W2614843160 @default.
- W3107881036 cites W2734883782 @default.
- W3107881036 cites W2761113113 @default.
- W3107881036 cites W2783069604 @default.
- W3107881036 cites W2788148336 @default.
- W3107881036 cites W2796179209 @default.
- W3107881036 cites W2905532165 @default.
- W3107881036 cites W2908356251 @default.
- W3107881036 cites W2910890149 @default.
- W3107881036 cites W2912623183 @default.
- W3107881036 cites W2920643142 @default.
- W3107881036 cites W2945813834 @default.
- W3107881036 cites W2948854742 @default.
- W3107881036 cites W2950072808 @default.
- W3107881036 cites W2964121744 @default.
- W3107881036 cites W2980189150 @default.
- W3107881036 cites W2982668879 @default.
- W3107881036 cites W2998152821 @default.
- W3107881036 cites W3000604112 @default.
- W3107881036 cites W3001501011 @default.
- W3107881036 cites W3001576933 @default.
- W3107881036 cites W3012038956 @default.
- W3107881036 cites W3016944287 @default.
- W3107881036 cites W3019963868 @default.
- W3107881036 cites W3089230449 @default.
- W3107881036 cites W3100777112 @default.
- W3107881036 cites W3111563129 @default.
- W3107881036 cites W1986236451 @default.
- W3107881036 doi "https://doi.org/10.1109/access.2020.3039733" @default.
- W3107881036 hasPublicationYear "2020" @default.
- W3107881036 type Work @default.
- W3107881036 sameAs 3107881036 @default.
- W3107881036 citedByCount "27" @default.
- W3107881036 countsByYear W31078810362021 @default.
- W3107881036 countsByYear W31078810362022 @default.
- W3107881036 countsByYear W31078810362023 @default.
- W3107881036 crossrefType "journal-article" @default.
- W3107881036 hasAuthorship W3107881036A5015796693 @default.
- W3107881036 hasAuthorship W3107881036A5050693707 @default.
- W3107881036 hasAuthorship W3107881036A5052397999 @default.
- W3107881036 hasAuthorship W3107881036A5079047498 @default.
- W3107881036 hasBestOaLocation W31078810361 @default.
- W3107881036 hasConcept C104317684 @default.
- W3107881036 hasConcept C10558101 @default.
- W3107881036 hasConcept C105795698 @default.
- W3107881036 hasConcept C119599485 @default.
- W3107881036 hasConcept C120314980 @default.
- W3107881036 hasConcept C127413603 @default.
- W3107881036 hasConcept C185592680 @default.
- W3107881036 hasConcept C186370098 @default.
- W3107881036 hasConcept C188573790 @default.
- W3107881036 hasConcept C2781260460 @default.
- W3107881036 hasConcept C33923547 @default.
- W3107881036 hasConcept C41008148 @default.
- W3107881036 hasConcept C41291067 @default.
- W3107881036 hasConcept C55493867 @default.
- W3107881036 hasConcept C63479239 @default.
- W3107881036 hasConcept C7817414 @default.
- W3107881036 hasConceptScore W3107881036C104317684 @default.