Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107888940> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3107888940 endingPage "032027" @default.
- W3107888940 startingPage "032027" @default.
- W3107888940 abstract "Abstract Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper suggests a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet attacks using CICIDS2017 dataset. The proposed model designed based on two types of filters to the botnet features; Correlation Attribute Eval and Principal Component deployed to reduce the dataset dimensions and to decrease the time complexity of the botnet detection process. The detection enhancement achieved by reducing the features of the dataset from 85 to 9. The training stage of classifiers is developed and compared based on six classifiers called (Random Forest, IBK, JRip, Multilayer Perceptron, Naive Bayes and OneR) evaluated to accomplish an optimized detection model. The performance and results of the proposed framework are validated using well-known metrics such as Accuracy (ACC), Precision (Pr), Recall (Rc) and F-Measure (F1). The consequence is that the combination of Correlation Attribute Eval (filter) with JRip (classifier) together can satisfy significant improvement in the Botnet detection process using CICIDS2017 dataset." @default.
- W3107888940 created "2020-12-07" @default.
- W3107888940 creator A5042989674 @default.
- W3107888940 creator A5072540300 @default.
- W3107888940 date "2020-11-01" @default.
- W3107888940 modified "2023-10-03" @default.
- W3107888940 title "Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset" @default.
- W3107888940 cites W2080184650 @default.
- W3107888940 cites W2137345105 @default.
- W3107888940 cites W2197680960 @default.
- W3107888940 cites W2736145511 @default.
- W3107888940 cites W2789592242 @default.
- W3107888940 cites W2803167497 @default.
- W3107888940 cites W2913166988 @default.
- W3107888940 cites W2938399969 @default.
- W3107888940 cites W2986887468 @default.
- W3107888940 cites W3103321707 @default.
- W3107888940 doi "https://doi.org/10.1088/1757-899x/928/3/032027" @default.
- W3107888940 hasPublicationYear "2020" @default.
- W3107888940 type Work @default.
- W3107888940 sameAs 3107888940 @default.
- W3107888940 citedByCount "6" @default.
- W3107888940 countsByYear W31078889402021 @default.
- W3107888940 countsByYear W31078889402022 @default.
- W3107888940 countsByYear W31078889402023 @default.
- W3107888940 crossrefType "journal-article" @default.
- W3107888940 hasAuthorship W3107888940A5042989674 @default.
- W3107888940 hasAuthorship W3107888940A5072540300 @default.
- W3107888940 hasBestOaLocation W31078889401 @default.
- W3107888940 hasConcept C110875604 @default.
- W3107888940 hasConcept C119857082 @default.
- W3107888940 hasConcept C12267149 @default.
- W3107888940 hasConcept C124101348 @default.
- W3107888940 hasConcept C136764020 @default.
- W3107888940 hasConcept C148524875 @default.
- W3107888940 hasConcept C153180895 @default.
- W3107888940 hasConcept C154945302 @default.
- W3107888940 hasConcept C169258074 @default.
- W3107888940 hasConcept C179717631 @default.
- W3107888940 hasConcept C22735295 @default.
- W3107888940 hasConcept C35525427 @default.
- W3107888940 hasConcept C41008148 @default.
- W3107888940 hasConcept C50644808 @default.
- W3107888940 hasConcept C52001869 @default.
- W3107888940 hasConcept C84525736 @default.
- W3107888940 hasConcept C95623464 @default.
- W3107888940 hasConceptScore W3107888940C110875604 @default.
- W3107888940 hasConceptScore W3107888940C119857082 @default.
- W3107888940 hasConceptScore W3107888940C12267149 @default.
- W3107888940 hasConceptScore W3107888940C124101348 @default.
- W3107888940 hasConceptScore W3107888940C136764020 @default.
- W3107888940 hasConceptScore W3107888940C148524875 @default.
- W3107888940 hasConceptScore W3107888940C153180895 @default.
- W3107888940 hasConceptScore W3107888940C154945302 @default.
- W3107888940 hasConceptScore W3107888940C169258074 @default.
- W3107888940 hasConceptScore W3107888940C179717631 @default.
- W3107888940 hasConceptScore W3107888940C22735295 @default.
- W3107888940 hasConceptScore W3107888940C35525427 @default.
- W3107888940 hasConceptScore W3107888940C41008148 @default.
- W3107888940 hasConceptScore W3107888940C50644808 @default.
- W3107888940 hasConceptScore W3107888940C52001869 @default.
- W3107888940 hasConceptScore W3107888940C84525736 @default.
- W3107888940 hasConceptScore W3107888940C95623464 @default.
- W3107888940 hasIssue "3" @default.
- W3107888940 hasLocation W31078889401 @default.
- W3107888940 hasOpenAccess W3107888940 @default.
- W3107888940 hasPrimaryLocation W31078889401 @default.
- W3107888940 hasRelatedWork W3106359073 @default.
- W3107888940 hasRelatedWork W3204641204 @default.
- W3107888940 hasRelatedWork W3211546796 @default.
- W3107888940 hasRelatedWork W4200196661 @default.
- W3107888940 hasRelatedWork W4249229055 @default.
- W3107888940 hasRelatedWork W4283784365 @default.
- W3107888940 hasRelatedWork W4294067781 @default.
- W3107888940 hasRelatedWork W4295036818 @default.
- W3107888940 hasRelatedWork W4312477524 @default.
- W3107888940 hasRelatedWork W4316082230 @default.
- W3107888940 hasVolume "928" @default.
- W3107888940 isParatext "false" @default.
- W3107888940 isRetracted "false" @default.
- W3107888940 magId "3107888940" @default.
- W3107888940 workType "article" @default.