Matches in SemOpenAlex for { <https://semopenalex.org/work/W3107979244> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3107979244 endingPage "110511" @default.
- W3107979244 startingPage "110511" @default.
- W3107979244 abstract "COVID-19 virus has encountered people in the world with numerous problems. Given the negative impacts of COVID-19 on all aspects of people's lives, especially health and economy, accurately forecasting the number of cases infected with this virus can help governments to make accurate decisions on the interventions that must be taken. In this study, we propose three hybrid approaches for forecasting COVID-19 time series methods based on combining three deep learning models such as multi-head attention, long short-term memory (LSTM), and convolutional neural network (CNN) with the Bayesian optimization algorithm. All models are designed based on the multiple-output forecasting strategy, which allows the forecasting of the multiple time points. The Bayesian optimization method automatically selects the best hyperparameters for each model and enhances forecasting performance. Using the publicly available epidemical data acquired from Johns Hopkins University's Coronavirus Resource Center, we conducted our experiments and evaluated the proposed models against the benchmark model. The results of experiments exhibit the superiority of the deep learning models over the benchmark model both for short-term forecasting and long-horizon forecasting. In particular, the mean SMAPE of the best deep learning model is 0.25 for the short-term forecasting (10 days ahead). Also, for long-horizon forecasting, the best deep learning model obtains the mean SMAPE of 2.59." @default.
- W3107979244 created "2020-12-07" @default.
- W3107979244 creator A5057409216 @default.
- W3107979244 creator A5064267652 @default.
- W3107979244 date "2021-01-01" @default.
- W3107979244 modified "2023-10-16" @default.
- W3107979244 title "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization" @default.
- W3107979244 cites W1689711448 @default.
- W3107979244 cites W2003706483 @default.
- W3107979244 cites W2064675550 @default.
- W3107979244 cites W2594182135 @default.
- W3107979244 cites W2622826443 @default.
- W3107979244 cites W2755749726 @default.
- W3107979244 cites W2909670596 @default.
- W3107979244 cites W2962994110 @default.
- W3107979244 cites W3009333463 @default.
- W3107979244 cites W3009906937 @default.
- W3107979244 cites W3014191625 @default.
- W3107979244 cites W3031293910 @default.
- W3107979244 cites W3032971139 @default.
- W3107979244 cites W3036309913 @default.
- W3107979244 cites W3049310425 @default.
- W3107979244 cites W3049737176 @default.
- W3107979244 cites W3080544186 @default.
- W3107979244 cites W3099042207 @default.
- W3107979244 doi "https://doi.org/10.1016/j.chaos.2020.110511" @default.
- W3107979244 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7699029" @default.
- W3107979244 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33281305" @default.
- W3107979244 hasPublicationYear "2021" @default.
- W3107979244 type Work @default.
- W3107979244 sameAs 3107979244 @default.
- W3107979244 citedByCount "93" @default.
- W3107979244 countsByYear W31079792442021 @default.
- W3107979244 countsByYear W31079792442022 @default.
- W3107979244 countsByYear W31079792442023 @default.
- W3107979244 crossrefType "journal-article" @default.
- W3107979244 hasAuthorship W3107979244A5057409216 @default.
- W3107979244 hasAuthorship W3107979244A5064267652 @default.
- W3107979244 hasBestOaLocation W31079792441 @default.
- W3107979244 hasConcept C107673813 @default.
- W3107979244 hasConcept C108583219 @default.
- W3107979244 hasConcept C119857082 @default.
- W3107979244 hasConcept C13280743 @default.
- W3107979244 hasConcept C142724271 @default.
- W3107979244 hasConcept C151406439 @default.
- W3107979244 hasConcept C154945302 @default.
- W3107979244 hasConcept C185798385 @default.
- W3107979244 hasConcept C205649164 @default.
- W3107979244 hasConcept C2779134260 @default.
- W3107979244 hasConcept C3008058167 @default.
- W3107979244 hasConcept C41008148 @default.
- W3107979244 hasConcept C50644808 @default.
- W3107979244 hasConcept C524204448 @default.
- W3107979244 hasConcept C71924100 @default.
- W3107979244 hasConcept C81363708 @default.
- W3107979244 hasConcept C8642999 @default.
- W3107979244 hasConceptScore W3107979244C107673813 @default.
- W3107979244 hasConceptScore W3107979244C108583219 @default.
- W3107979244 hasConceptScore W3107979244C119857082 @default.
- W3107979244 hasConceptScore W3107979244C13280743 @default.
- W3107979244 hasConceptScore W3107979244C142724271 @default.
- W3107979244 hasConceptScore W3107979244C151406439 @default.
- W3107979244 hasConceptScore W3107979244C154945302 @default.
- W3107979244 hasConceptScore W3107979244C185798385 @default.
- W3107979244 hasConceptScore W3107979244C205649164 @default.
- W3107979244 hasConceptScore W3107979244C2779134260 @default.
- W3107979244 hasConceptScore W3107979244C3008058167 @default.
- W3107979244 hasConceptScore W3107979244C41008148 @default.
- W3107979244 hasConceptScore W3107979244C50644808 @default.
- W3107979244 hasConceptScore W3107979244C524204448 @default.
- W3107979244 hasConceptScore W3107979244C71924100 @default.
- W3107979244 hasConceptScore W3107979244C81363708 @default.
- W3107979244 hasConceptScore W3107979244C8642999 @default.
- W3107979244 hasLocation W31079792441 @default.
- W3107979244 hasLocation W31079792442 @default.
- W3107979244 hasOpenAccess W3107979244 @default.
- W3107979244 hasPrimaryLocation W31079792441 @default.
- W3107979244 hasRelatedWork W2731899572 @default.
- W3107979244 hasRelatedWork W2999805992 @default.
- W3107979244 hasRelatedWork W3116150086 @default.
- W3107979244 hasRelatedWork W3130227562 @default.
- W3107979244 hasRelatedWork W3133861977 @default.
- W3107979244 hasRelatedWork W3137262131 @default.
- W3107979244 hasRelatedWork W4200173597 @default.
- W3107979244 hasRelatedWork W4312417841 @default.
- W3107979244 hasRelatedWork W4321369474 @default.
- W3107979244 hasRelatedWork W4380075502 @default.
- W3107979244 hasVolume "142" @default.
- W3107979244 isParatext "false" @default.
- W3107979244 isRetracted "false" @default.
- W3107979244 magId "3107979244" @default.
- W3107979244 workType "article" @default.