Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108071946> ?p ?o ?g. }
- W3108071946 endingPage "e24594" @default.
- W3108071946 startingPage "e24594" @default.
- W3108071946 abstract "Background Interoperability and secondary use of data is a challenge in health care. Specifically, the reuse of clinical free text remains an unresolved problem. The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) has become the universal language of health care and presents characteristics of a natural language. Its use to represent clinical free text could constitute a solution to improve interoperability. Objective Although the use of SNOMED and SNOMED CT has already been reviewed, its specific use in processing and representing unstructured data such as clinical free text has not. This review aims to better understand SNOMED CT's use for representing free text in medicine. Methods A scoping review was performed on the topic by searching MEDLINE, Embase, and Web of Science for publications featuring free-text processing and SNOMED CT. A recursive reference review was conducted to broaden the scope of research. The review covered the type of processed data, the targeted language, the goal of the terminology binding, the method used and, when appropriate, the specific software used. Results In total, 76 publications were selected for an extensive study. The language targeted by publications was 91% (n=69) English. The most frequent types of documents for which the terminology was used are complementary exam reports (n=18, 24%) and narrative notes (n=16, 21%). Mapping to SNOMED CT was the final goal of the research in 21% (n=16) of publications and a part of the final goal in 33% (n=25). The main objectives of mapping are information extraction (n=44, 39%), feature in a classification task (n=26, 23%), and data normalization (n=23, 20%). The method used was rule-based in 70% (n=53) of publications, hybrid in 11% (n=8), and machine learning in 5% (n=4). In total, 12 different software packages were used to map text to SNOMED CT concepts, the most frequent being Medtex, Mayo Clinic Vocabulary Server, and Medical Text Extraction Reasoning and Mapping System. Full terminology was used in 64% (n=49) of publications, whereas only a subset was used in 30% (n=23) of publications. Postcoordination was proposed in 17% (n=13) of publications, and only 5% (n=4) of publications specifically mentioned the use of the compositional grammar. Conclusions SNOMED CT has been largely used to represent free-text data, most frequently with rule-based approaches, in English. However, currently, there is no easy solution for mapping free text to this terminology and to perform automatic postcoordination. Most solutions conceive SNOMED CT as a simple terminology rather than as a compositional bag of ontologies. Since 2012, the number of publications on this subject per year has decreased. However, the need for formal semantic representation of free text in health care is high, and automatic encoding into a compositional ontology could be a solution." @default.
- W3108071946 created "2020-12-07" @default.
- W3108071946 creator A5012347958 @default.
- W3108071946 creator A5016557721 @default.
- W3108071946 creator A5064859584 @default.
- W3108071946 creator A5083072992 @default.
- W3108071946 date "2021-01-26" @default.
- W3108071946 modified "2023-10-13" @default.
- W3108071946 title "Use of the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) for Processing Free Text in Health Care: Systematic Scoping Review" @default.
- W3108071946 cites W145073336 @default.
- W3108071946 cites W1481389199 @default.
- W3108071946 cites W1483703983 @default.
- W3108071946 cites W1504212872 @default.
- W3108071946 cites W1550668049 @default.
- W3108071946 cites W1759313566 @default.
- W3108071946 cites W177117832 @default.
- W3108071946 cites W1772646688 @default.
- W3108071946 cites W1871067837 @default.
- W3108071946 cites W1971013794 @default.
- W3108071946 cites W1979945892 @default.
- W3108071946 cites W1985875906 @default.
- W3108071946 cites W2009790391 @default.
- W3108071946 cites W2014176958 @default.
- W3108071946 cites W2018175819 @default.
- W3108071946 cites W2029028452 @default.
- W3108071946 cites W2037835736 @default.
- W3108071946 cites W2040298842 @default.
- W3108071946 cites W2047452505 @default.
- W3108071946 cites W2053449218 @default.
- W3108071946 cites W2053715834 @default.
- W3108071946 cites W2060832910 @default.
- W3108071946 cites W2061848042 @default.
- W3108071946 cites W2079585637 @default.
- W3108071946 cites W2082258771 @default.
- W3108071946 cites W2093354796 @default.
- W3108071946 cites W2094937180 @default.
- W3108071946 cites W2096252540 @default.
- W3108071946 cites W2100364461 @default.
- W3108071946 cites W2100676408 @default.
- W3108071946 cites W2104321900 @default.
- W3108071946 cites W2106797966 @default.
- W3108071946 cites W2111519552 @default.
- W3108071946 cites W2114668172 @default.
- W3108071946 cites W2115488413 @default.
- W3108071946 cites W2121131527 @default.
- W3108071946 cites W2122402213 @default.
- W3108071946 cites W2122619911 @default.
- W3108071946 cites W2128535227 @default.
- W3108071946 cites W2129627823 @default.
- W3108071946 cites W2134015035 @default.
- W3108071946 cites W2139865360 @default.
- W3108071946 cites W2141359281 @default.
- W3108071946 cites W2145522203 @default.
- W3108071946 cites W2146089916 @default.
- W3108071946 cites W2146155488 @default.
- W3108071946 cites W2150730101 @default.
- W3108071946 cites W2150838562 @default.
- W3108071946 cites W2150944609 @default.
- W3108071946 cites W2161290748 @default.
- W3108071946 cites W2166861608 @default.
- W3108071946 cites W2168041406 @default.
- W3108071946 cites W2168062679 @default.
- W3108071946 cites W2179627207 @default.
- W3108071946 cites W2283041611 @default.
- W3108071946 cites W2338526423 @default.
- W3108071946 cites W2604748391 @default.
- W3108071946 cites W2608743542 @default.
- W3108071946 cites W2610193679 @default.
- W3108071946 cites W2767350626 @default.
- W3108071946 cites W2788910624 @default.
- W3108071946 cites W2800235673 @default.
- W3108071946 cites W2801547136 @default.
- W3108071946 cites W2886374306 @default.
- W3108071946 cites W2891469329 @default.
- W3108071946 cites W4246442550 @default.
- W3108071946 cites W4247056187 @default.
- W3108071946 cites W4294215472 @default.
- W3108071946 doi "https://doi.org/10.2196/24594" @default.
- W3108071946 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7872838" @default.
- W3108071946 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33496673" @default.
- W3108071946 hasPublicationYear "2021" @default.
- W3108071946 type Work @default.
- W3108071946 sameAs 3108071946 @default.
- W3108071946 citedByCount "25" @default.
- W3108071946 countsByYear W31080719462021 @default.
- W3108071946 countsByYear W31080719462022 @default.
- W3108071946 countsByYear W31080719462023 @default.
- W3108071946 crossrefType "journal-article" @default.
- W3108071946 hasAuthorship W3108071946A5012347958 @default.
- W3108071946 hasAuthorship W3108071946A5016557721 @default.
- W3108071946 hasAuthorship W3108071946A5064859584 @default.
- W3108071946 hasAuthorship W3108071946A5083072992 @default.
- W3108071946 hasBestOaLocation W31080719461 @default.
- W3108071946 hasConcept C136764020 @default.
- W3108071946 hasConcept C138885662 @default.
- W3108071946 hasConcept C160735492 @default.
- W3108071946 hasConcept C162324750 @default.
- W3108071946 hasConcept C17744445 @default.