Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108098023> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3108098023 endingPage "110633" @default.
- W3108098023 startingPage "110633" @default.
- W3108098023 abstract "• A clinical workflow using machine learning methods is presented to predict the sex. • Naïve Bayesian is the best tool for sex classification. • The first molar teeth had a relatively high accuracy of sex differentiation. • Odontometric parameters can be applied as an additional tool for sex determination. The teeth have been used as a supplementary tool for sex differentiation as they are resistant to post-mortem degradation. The present study aimed to develop a new novel informatics framework for predicting sex from linear tooth dimension measurements achieved from cone beam computed tomography (CBCT) images. A clinical workflow using different machine learning methods was employed to predict the sex in the present study. The CBCT images of 485 subjects (245 men and 240 women) were evaluated for sex differentiation. Nine parameters were measured in both buccolingual and mesiodistal aspects of the teeth. We applied our dataset to Naïve Bayesian (NB), Random Forest (RF), and Support Vector Machine (SVM) as classifiers for prediction. Genetic feature selection was used to discover real features associated with sex classification. The 10-fold cross-validation results indicated that NB had higher accuracy than SVM and RF for sex classification. The genetic algorithm (GA) indicated that the model could fit the data without using the enamel thickness and pulp height. The average classification accuracy of our clinical workflow was 92.31 %. The results showed that NB was the best method for sex classification. The application of the first molar teeth in sex prediction indicated an acceptable level of sexual classification. Therefore, these odontometric parameters can be applied as an additional tool for sex determination in forensic anthropology." @default.
- W3108098023 created "2020-12-07" @default.
- W3108098023 creator A5004360095 @default.
- W3108098023 creator A5055780080 @default.
- W3108098023 creator A5056609931 @default.
- W3108098023 date "2021-01-01" @default.
- W3108098023 modified "2023-09-25" @default.
- W3108098023 title "Sex classification of first molar teeth in cone beam computed tomography images using data mining" @default.
- W3108098023 cites W1784250842 @default.
- W3108098023 cites W1973278498 @default.
- W3108098023 cites W1978626895 @default.
- W3108098023 cites W1994925884 @default.
- W3108098023 cites W2007022163 @default.
- W3108098023 cites W2030084924 @default.
- W3108098023 cites W2051521310 @default.
- W3108098023 cites W2079945510 @default.
- W3108098023 cites W2100659069 @default.
- W3108098023 cites W2105195776 @default.
- W3108098023 cites W2140972007 @default.
- W3108098023 cites W2143580423 @default.
- W3108098023 cites W2564502877 @default.
- W3108098023 cites W2906697588 @default.
- W3108098023 cites W2908170048 @default.
- W3108098023 cites W2908341531 @default.
- W3108098023 cites W2916283053 @default.
- W3108098023 cites W2979324155 @default.
- W3108098023 cites W3046636473 @default.
- W3108098023 doi "https://doi.org/10.1016/j.forsciint.2020.110633" @default.
- W3108098023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33279763" @default.
- W3108098023 hasPublicationYear "2021" @default.
- W3108098023 type Work @default.
- W3108098023 sameAs 3108098023 @default.
- W3108098023 citedByCount "8" @default.
- W3108098023 countsByYear W31080980232022 @default.
- W3108098023 countsByYear W31080980232023 @default.
- W3108098023 crossrefType "journal-article" @default.
- W3108098023 hasAuthorship W3108098023A5004360095 @default.
- W3108098023 hasAuthorship W3108098023A5055780080 @default.
- W3108098023 hasAuthorship W3108098023A5056609931 @default.
- W3108098023 hasConcept C119857082 @default.
- W3108098023 hasConcept C12267149 @default.
- W3108098023 hasConcept C126838900 @default.
- W3108098023 hasConcept C153180895 @default.
- W3108098023 hasConcept C154945302 @default.
- W3108098023 hasConcept C169258074 @default.
- W3108098023 hasConcept C177212765 @default.
- W3108098023 hasConcept C199343813 @default.
- W3108098023 hasConcept C202271784 @default.
- W3108098023 hasConcept C2779813781 @default.
- W3108098023 hasConcept C33923547 @default.
- W3108098023 hasConcept C41008148 @default.
- W3108098023 hasConcept C52001869 @default.
- W3108098023 hasConcept C544519230 @default.
- W3108098023 hasConcept C71924100 @default.
- W3108098023 hasConcept C77088390 @default.
- W3108098023 hasConceptScore W3108098023C119857082 @default.
- W3108098023 hasConceptScore W3108098023C12267149 @default.
- W3108098023 hasConceptScore W3108098023C126838900 @default.
- W3108098023 hasConceptScore W3108098023C153180895 @default.
- W3108098023 hasConceptScore W3108098023C154945302 @default.
- W3108098023 hasConceptScore W3108098023C169258074 @default.
- W3108098023 hasConceptScore W3108098023C177212765 @default.
- W3108098023 hasConceptScore W3108098023C199343813 @default.
- W3108098023 hasConceptScore W3108098023C202271784 @default.
- W3108098023 hasConceptScore W3108098023C2779813781 @default.
- W3108098023 hasConceptScore W3108098023C33923547 @default.
- W3108098023 hasConceptScore W3108098023C41008148 @default.
- W3108098023 hasConceptScore W3108098023C52001869 @default.
- W3108098023 hasConceptScore W3108098023C544519230 @default.
- W3108098023 hasConceptScore W3108098023C71924100 @default.
- W3108098023 hasConceptScore W3108098023C77088390 @default.
- W3108098023 hasLocation W31080980231 @default.
- W3108098023 hasOpenAccess W3108098023 @default.
- W3108098023 hasPrimaryLocation W31080980231 @default.
- W3108098023 hasRelatedWork W2096363641 @default.
- W3108098023 hasRelatedWork W2566202276 @default.
- W3108098023 hasRelatedWork W2595988085 @default.
- W3108098023 hasRelatedWork W2979979539 @default.
- W3108098023 hasRelatedWork W2985924212 @default.
- W3108098023 hasRelatedWork W3127425528 @default.
- W3108098023 hasRelatedWork W3143658565 @default.
- W3108098023 hasRelatedWork W4205958290 @default.
- W3108098023 hasRelatedWork W4311106074 @default.
- W3108098023 hasRelatedWork W4316658725 @default.
- W3108098023 hasVolume "318" @default.
- W3108098023 isParatext "false" @default.
- W3108098023 isRetracted "false" @default.
- W3108098023 magId "3108098023" @default.
- W3108098023 workType "article" @default.