Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108150863> ?p ?o ?g. }
- W3108150863 endingPage "124753" @default.
- W3108150863 startingPage "124753" @default.
- W3108150863 abstract "Abstract Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has become a major public concern in closed indoor environments, such as subway stations. Forecasting platform PM2.5 concentrations is significant in developing early warning systems, and regulating ventilation systems to ensure commuter health. However, the performance of existing forecasting approaches relies on a considerable amount of historical sensor data, which is usually not available in practical situations due to hostile monitoring environments or newly installed equipment. Transfer learning (TL) provides a solution to the scant data problem, as it leverages the knowledge learned from well-measured subway stations to facilitate predictions on others. This paper presents a TL-based residual neural network framework for sequential forecast of health risk levels traced by subway platform PM2.5 levels. Experiments are conducted to investigate the potential of the proposed methodology under different data availability scenarios. The TL-framework outperforms the RNN structures with a determination coefficient (R2) improvement of 42.84%, and in comparison, to stand-alone models the prediction errors (RMSE) are reduced up to 40%. Additionally, the forecasted data by TL-framework under limited data scenario allowed the ventilation system to maintain IAQ at healthy levels, and reduced PM2.5 concentrations by 29.21% as compared to stand-alone network." @default.
- W3108150863 created "2020-12-07" @default.
- W3108150863 creator A5026705729 @default.
- W3108150863 creator A5046535259 @default.
- W3108150863 creator A5049192320 @default.
- W3108150863 creator A5061215639 @default.
- W3108150863 creator A5076131656 @default.
- W3108150863 creator A5085381564 @default.
- W3108150863 creator A5087845081 @default.
- W3108150863 date "2021-03-01" @default.
- W3108150863 modified "2023-10-16" @default.
- W3108150863 title "Transfer learning driven sequential forecasting and ventilation control of PM2.5 associated health risk levels in underground public facilities" @default.
- W3108150863 cites W165800822 @default.
- W3108150863 cites W1965157701 @default.
- W3108150863 cites W1967939326 @default.
- W3108150863 cites W1986614398 @default.
- W3108150863 cites W2012922494 @default.
- W3108150863 cites W2022482652 @default.
- W3108150863 cites W2030132082 @default.
- W3108150863 cites W2030143591 @default.
- W3108150863 cites W2030849516 @default.
- W3108150863 cites W2036411747 @default.
- W3108150863 cites W2067186191 @default.
- W3108150863 cites W2078650206 @default.
- W3108150863 cites W2078913624 @default.
- W3108150863 cites W2102031662 @default.
- W3108150863 cites W2116762602 @default.
- W3108150863 cites W2140804691 @default.
- W3108150863 cites W2165698076 @default.
- W3108150863 cites W2166604768 @default.
- W3108150863 cites W2194775991 @default.
- W3108150863 cites W2215891346 @default.
- W3108150863 cites W2261689926 @default.
- W3108150863 cites W2532006013 @default.
- W3108150863 cites W2570322979 @default.
- W3108150863 cites W2589582138 @default.
- W3108150863 cites W2605547195 @default.
- W3108150863 cites W2625509183 @default.
- W3108150863 cites W2737749939 @default.
- W3108150863 cites W278394188 @default.
- W3108150863 cites W2796326599 @default.
- W3108150863 cites W2802052371 @default.
- W3108150863 cites W2805797750 @default.
- W3108150863 cites W2883599811 @default.
- W3108150863 cites W2886253200 @default.
- W3108150863 cites W2887280559 @default.
- W3108150863 cites W2901338302 @default.
- W3108150863 cites W2915939236 @default.
- W3108150863 cites W2916979377 @default.
- W3108150863 cites W2947754577 @default.
- W3108150863 cites W2950757722 @default.
- W3108150863 cites W2954508354 @default.
- W3108150863 cites W2965353672 @default.
- W3108150863 cites W2966153025 @default.
- W3108150863 cites W2967141048 @default.
- W3108150863 cites W2971899777 @default.
- W3108150863 cites W2990226288 @default.
- W3108150863 cites W2990792561 @default.
- W3108150863 cites W2999491213 @default.
- W3108150863 cites W3009876865 @default.
- W3108150863 cites W3014411108 @default.
- W3108150863 cites W3028016679 @default.
- W3108150863 cites W3106543020 @default.
- W3108150863 cites W351991690 @default.
- W3108150863 cites W887461706 @default.
- W3108150863 doi "https://doi.org/10.1016/j.jhazmat.2020.124753" @default.
- W3108150863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33310334" @default.
- W3108150863 hasPublicationYear "2021" @default.
- W3108150863 type Work @default.
- W3108150863 sameAs 3108150863 @default.
- W3108150863 citedByCount "22" @default.
- W3108150863 countsByYear W31081508632021 @default.
- W3108150863 countsByYear W31081508632022 @default.
- W3108150863 countsByYear W31081508632023 @default.
- W3108150863 crossrefType "journal-article" @default.
- W3108150863 hasAuthorship W3108150863A5026705729 @default.
- W3108150863 hasAuthorship W3108150863A5046535259 @default.
- W3108150863 hasAuthorship W3108150863A5049192320 @default.
- W3108150863 hasAuthorship W3108150863A5061215639 @default.
- W3108150863 hasAuthorship W3108150863A5076131656 @default.
- W3108150863 hasAuthorship W3108150863A5085381564 @default.
- W3108150863 hasAuthorship W3108150863A5087845081 @default.
- W3108150863 hasConcept C127413603 @default.
- W3108150863 hasConcept C138816342 @default.
- W3108150863 hasConcept C150899416 @default.
- W3108150863 hasConcept C153294291 @default.
- W3108150863 hasConcept C154945302 @default.
- W3108150863 hasConcept C159110408 @default.
- W3108150863 hasConcept C200457457 @default.
- W3108150863 hasConcept C205649164 @default.
- W3108150863 hasConcept C2775924081 @default.
- W3108150863 hasConcept C39432304 @default.
- W3108150863 hasConcept C41008148 @default.
- W3108150863 hasConcept C71924100 @default.
- W3108150863 hasConcept C99454951 @default.
- W3108150863 hasConceptScore W3108150863C127413603 @default.
- W3108150863 hasConceptScore W3108150863C138816342 @default.
- W3108150863 hasConceptScore W3108150863C150899416 @default.