Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108191545> ?p ?o ?g. }
- W3108191545 endingPage "1283" @default.
- W3108191545 startingPage "1283" @default.
- W3108191545 abstract "South Africa is reported to experience timber shortages as a result of growing timber demands and pulp production, coupled with the government’s reluctance to grant new forestry permits. Rampant timber theft in the country makes these circumstances worse. The emergence of cloud-based platforms, such as Google Earth Engine (GEE), has greatly improved the accessibility and usability of high spatial and temporal Sentinel-1 and -2 data, especially in data-poor countries that lack high-performance computing systems for forest monitoring. Here, we demonstrate the potential of these resources for forest harvest detection. The results showed that Sentinel-1 data are efficient in detecting clear-cut events; both VH and VV backscatter signals decline sharply in accordance with clear-cutting and increase again when forest biomass increases. When correlated with highly responsive NDII, the VH and VV signals reached the best accuracies of 0.79 and 0.83, whereas the SWIR1 achieved –0.91. A Random Forest (RF) algorithm based on Sentinel-2 data also achieved over 90% accuracies for classifying harvested and forested areas. Overall, our study presents a cost-effective method for mapping clear-cut events in an economically important forestry area of South Africa while using GEE resources." @default.
- W3108191545 created "2020-12-07" @default.
- W3108191545 creator A5019450005 @default.
- W3108191545 creator A5020293602 @default.
- W3108191545 creator A5027512998 @default.
- W3108191545 creator A5053014038 @default.
- W3108191545 date "2020-11-29" @default.
- W3108191545 modified "2023-10-01" @default.
- W3108191545 title "Detecting Harvest Events in Plantation Forest Using Sentinel-1 and -2 Data via Google Earth Engine" @default.
- W3108191545 cites W1965825034 @default.
- W3108191545 cites W1966711117 @default.
- W3108191545 cites W1973681195 @default.
- W3108191545 cites W1974182496 @default.
- W3108191545 cites W1979210946 @default.
- W3108191545 cites W1985479415 @default.
- W3108191545 cites W2022515082 @default.
- W3108191545 cites W2044342773 @default.
- W3108191545 cites W2047884674 @default.
- W3108191545 cites W2061804983 @default.
- W3108191545 cites W2086620533 @default.
- W3108191545 cites W2093321230 @default.
- W3108191545 cites W2093502632 @default.
- W3108191545 cites W2097447406 @default.
- W3108191545 cites W2115769370 @default.
- W3108191545 cites W2117881474 @default.
- W3108191545 cites W2119355555 @default.
- W3108191545 cites W2139679018 @default.
- W3108191545 cites W2140023211 @default.
- W3108191545 cites W2140908571 @default.
- W3108191545 cites W2149580466 @default.
- W3108191545 cites W2155313867 @default.
- W3108191545 cites W2162416391 @default.
- W3108191545 cites W2208388837 @default.
- W3108191545 cites W2288373547 @default.
- W3108191545 cites W2295813245 @default.
- W3108191545 cites W2328006415 @default.
- W3108191545 cites W2329337750 @default.
- W3108191545 cites W2331402359 @default.
- W3108191545 cites W2341158511 @default.
- W3108191545 cites W2388309475 @default.
- W3108191545 cites W2511253820 @default.
- W3108191545 cites W2520905560 @default.
- W3108191545 cites W2527207704 @default.
- W3108191545 cites W2553266079 @default.
- W3108191545 cites W2559468428 @default.
- W3108191545 cites W2563427450 @default.
- W3108191545 cites W2584552141 @default.
- W3108191545 cites W2585309444 @default.
- W3108191545 cites W2591129009 @default.
- W3108191545 cites W2613179521 @default.
- W3108191545 cites W2625277120 @default.
- W3108191545 cites W2725897987 @default.
- W3108191545 cites W2733768840 @default.
- W3108191545 cites W2735602585 @default.
- W3108191545 cites W2745131289 @default.
- W3108191545 cites W2775069442 @default.
- W3108191545 cites W2802392541 @default.
- W3108191545 cites W2803433330 @default.
- W3108191545 cites W2808814120 @default.
- W3108191545 cites W2810071754 @default.
- W3108191545 cites W2844659735 @default.
- W3108191545 cites W2889410006 @default.
- W3108191545 cites W2890183925 @default.
- W3108191545 cites W2890423234 @default.
- W3108191545 cites W2898514183 @default.
- W3108191545 cites W2903393643 @default.
- W3108191545 cites W2910942888 @default.
- W3108191545 cites W2911964244 @default.
- W3108191545 cites W2953772517 @default.
- W3108191545 cites W3087667709 @default.
- W3108191545 doi "https://doi.org/10.3390/f11121283" @default.
- W3108191545 hasPublicationYear "2020" @default.
- W3108191545 type Work @default.
- W3108191545 sameAs 3108191545 @default.
- W3108191545 citedByCount "5" @default.
- W3108191545 countsByYear W31081915452021 @default.
- W3108191545 countsByYear W31081915452022 @default.
- W3108191545 countsByYear W31081915452023 @default.
- W3108191545 crossrefType "journal-article" @default.
- W3108191545 hasAuthorship W3108191545A5019450005 @default.
- W3108191545 hasAuthorship W3108191545A5020293602 @default.
- W3108191545 hasAuthorship W3108191545A5027512998 @default.
- W3108191545 hasAuthorship W3108191545A5053014038 @default.
- W3108191545 hasBestOaLocation W31081915451 @default.
- W3108191545 hasConcept C107826830 @default.
- W3108191545 hasConcept C115540264 @default.
- W3108191545 hasConcept C119857082 @default.
- W3108191545 hasConcept C125620115 @default.
- W3108191545 hasConcept C138885662 @default.
- W3108191545 hasConcept C144133560 @default.
- W3108191545 hasConcept C147103442 @default.
- W3108191545 hasConcept C169258074 @default.
- W3108191545 hasConcept C18903297 @default.
- W3108191545 hasConcept C194051981 @default.
- W3108191545 hasConcept C205649164 @default.
- W3108191545 hasConcept C2778137410 @default.
- W3108191545 hasConcept C2781353100 @default.
- W3108191545 hasConcept C28631016 @default.