Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108228462> ?p ?o ?g. }
- W3108228462 abstract "The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions." @default.
- W3108228462 created "2020-12-07" @default.
- W3108228462 creator A5006897094 @default.
- W3108228462 creator A5009408707 @default.
- W3108228462 creator A5018198927 @default.
- W3108228462 creator A5049482514 @default.
- W3108228462 creator A5049692788 @default.
- W3108228462 date "2019-05-10" @default.
- W3108228462 modified "2023-10-16" @default.
- W3108228462 title "Time-Series Event Prediction with Evolutionary State Graph" @default.
- W3108228462 cites W116902681 @default.
- W3108228462 cites W119403003 @default.
- W3108228462 cites W1815076433 @default.
- W3108228462 cites W1847088711 @default.
- W3108228462 cites W1854214752 @default.
- W3108228462 cites W1993332189 @default.
- W3108228462 cites W2002608093 @default.
- W3108228462 cites W2004083143 @default.
- W3108228462 cites W2026909728 @default.
- W3108228462 cites W2027829650 @default.
- W3108228462 cites W2035104901 @default.
- W3108228462 cites W2050493487 @default.
- W3108228462 cites W2064675550 @default.
- W3108228462 cites W2068194158 @default.
- W3108228462 cites W2068394775 @default.
- W3108228462 cites W2105594594 @default.
- W3108228462 cites W2107878631 @default.
- W3108228462 cites W2112615110 @default.
- W3108228462 cites W2123502857 @default.
- W3108228462 cites W2141536962 @default.
- W3108228462 cites W2150120952 @default.
- W3108228462 cites W2154986869 @default.
- W3108228462 cites W2159701653 @default.
- W3108228462 cites W2161160262 @default.
- W3108228462 cites W2164274563 @default.
- W3108228462 cites W2166547175 @default.
- W3108228462 cites W2171707538 @default.
- W3108228462 cites W2402972623 @default.
- W3108228462 cites W2509830164 @default.
- W3108228462 cites W2552391307 @default.
- W3108228462 cites W2555077524 @default.
- W3108228462 cites W2590960023 @default.
- W3108228462 cites W2606780347 @default.
- W3108228462 cites W2626473047 @default.
- W3108228462 cites W2751808960 @default.
- W3108228462 cites W2770604561 @default.
- W3108228462 cites W2785948534 @default.
- W3108228462 cites W2808955427 @default.
- W3108228462 cites W2904832339 @default.
- W3108228462 cites W2950898568 @default.
- W3108228462 cites W2951256120 @default.
- W3108228462 cites W2951493377 @default.
- W3108228462 cites W2962767366 @default.
- W3108228462 cites W2962788496 @default.
- W3108228462 cites W2963058385 @default.
- W3108228462 cites W2963207497 @default.
- W3108228462 cites W2963370555 @default.
- W3108228462 cites W2963396646 @default.
- W3108228462 cites W2963406064 @default.
- W3108228462 cites W2963603080 @default.
- W3108228462 cites W2963678809 @default.
- W3108228462 cites W2963735467 @default.
- W3108228462 cites W2963858333 @default.
- W3108228462 cites W2964113829 @default.
- W3108228462 cites W2964121744 @default.
- W3108228462 cites W2964321699 @default.
- W3108228462 cites W2988873313 @default.
- W3108228462 cites W2996451395 @default.
- W3108228462 cites W2998313947 @default.
- W3108228462 cites W3098588661 @default.
- W3108228462 cites W3098957257 @default.
- W3108228462 cites W3102476541 @default.
- W3108228462 cites W3104097132 @default.
- W3108228462 cites W789250018 @default.
- W3108228462 doi "https://doi.org/10.48550/arxiv.1905.05006" @default.
- W3108228462 hasPublicationYear "2019" @default.
- W3108228462 type Work @default.
- W3108228462 sameAs 3108228462 @default.
- W3108228462 citedByCount "1" @default.
- W3108228462 countsByYear W31082284622021 @default.
- W3108228462 crossrefType "posted-content" @default.
- W3108228462 hasAuthorship W3108228462A5006897094 @default.
- W3108228462 hasAuthorship W3108228462A5009408707 @default.
- W3108228462 hasAuthorship W3108228462A5018198927 @default.
- W3108228462 hasAuthorship W3108228462A5049482514 @default.
- W3108228462 hasAuthorship W3108228462A5049692788 @default.
- W3108228462 hasBestOaLocation W31082284621 @default.
- W3108228462 hasConcept C104317684 @default.
- W3108228462 hasConcept C119857082 @default.
- W3108228462 hasConcept C124101348 @default.
- W3108228462 hasConcept C132525143 @default.
- W3108228462 hasConcept C151406439 @default.
- W3108228462 hasConcept C154945302 @default.
- W3108228462 hasConcept C185592680 @default.
- W3108228462 hasConcept C41008148 @default.
- W3108228462 hasConcept C55493867 @default.
- W3108228462 hasConcept C66746571 @default.
- W3108228462 hasConcept C80444323 @default.
- W3108228462 hasConceptScore W3108228462C104317684 @default.
- W3108228462 hasConceptScore W3108228462C119857082 @default.