Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108328433> ?p ?o ?g. }
- W3108328433 abstract "Abstract Objectives The appropriate care for patients admitted in Intensive care units (ICUs) is becoming increasingly prominent, thus recognizing the use of machine learning models. The real-time prediction of mortality of patients admitted in ICU has the potential for providing the physician with the interpretable results. With the growing crisis including soaring cost, unsafe care, misdirected care, fragmented care, chronic diseases and evolution of epidemic diseases in the domain of healthcare demands the application of automated and real-time data processing for assuring the improved quality of life. The intensive care units (ICUs) are responsible for generating a wealth of useful data in the form of Electronic Health Record (EHR). This data allows for the development of a prediction tool with perfect knowledge backing. Method We aimed to build the mortality prediction model on 2012 Physionet Challenge mortality prediction database of 4,000 patients admitted in ICU. The challenges in the dataset, such as high dimensionality, imbalanced distribution and missing values, were tackled with analytical methods and tools via feature engineering and new variable construction. The objective of the research is to utilize the relations among the clinical variables and construct new variables which would establish the effectiveness of 1-Dimensional Convolutional Neural Network (1-D CNN) with constructed features. Results Its performance with the traditional machine learning algorithms like XGBoost classifier, Light Gradient Boosting Machine (LGBM) classifier, Support Vector Machine (SVM), Decision Tree (DT), K-Neighbours Classifier (K-NN), and Random Forest Classifier (RF) and recurrent models like Long Short-Term Memory (LSTM) and LSTM-attention is compared for Area Under Curve (AUC). The investigation reveals the best AUC of 0.848 using 1-D CNN model. Conclusion The relationship between the various features were recognized. Also, constructed new features using existing ones. Multiple models were tested and compared on different metrics." @default.
- W3108328433 created "2020-12-07" @default.
- W3108328433 creator A5022851447 @default.
- W3108328433 creator A5045931669 @default.
- W3108328433 creator A5082045716 @default.
- W3108328433 date "2020-11-23" @default.
- W3108328433 modified "2023-09-24" @default.
- W3108328433 title "Feature engineering combined with 1-D convolutional neural network for improved mortality prediction" @default.
- W3108328433 cites W1493241108 @default.
- W3108328433 cites W1689711448 @default.
- W3108328433 cites W1964176984 @default.
- W3108328433 cites W1972770885 @default.
- W3108328433 cites W1973683489 @default.
- W3108328433 cites W1982734574 @default.
- W3108328433 cites W1983024255 @default.
- W3108328433 cites W1993387719 @default.
- W3108328433 cites W2011813012 @default.
- W3108328433 cites W2033925475 @default.
- W3108328433 cites W2042954874 @default.
- W3108328433 cites W2054439702 @default.
- W3108328433 cites W2083634842 @default.
- W3108328433 cites W2086247090 @default.
- W3108328433 cites W2107869022 @default.
- W3108328433 cites W2128349740 @default.
- W3108328433 cites W2162800060 @default.
- W3108328433 cites W2461729787 @default.
- W3108328433 cites W2464295518 @default.
- W3108328433 cites W2497795462 @default.
- W3108328433 cites W2534318479 @default.
- W3108328433 cites W2587391452 @default.
- W3108328433 cites W2604941932 @default.
- W3108328433 cites W2766155847 @default.
- W3108328433 cites W2796186337 @default.
- W3108328433 cites W2939843540 @default.
- W3108328433 cites W2964407252 @default.
- W3108328433 cites W4293242440 @default.
- W3108328433 cites W4361865037 @default.
- W3108328433 doi "https://doi.org/10.1515/bams-2020-0056" @default.
- W3108328433 hasPublicationYear "2020" @default.
- W3108328433 type Work @default.
- W3108328433 sameAs 3108328433 @default.
- W3108328433 citedByCount "1" @default.
- W3108328433 countsByYear W31083284332023 @default.
- W3108328433 crossrefType "journal-article" @default.
- W3108328433 hasAuthorship W3108328433A5022851447 @default.
- W3108328433 hasAuthorship W3108328433A5045931669 @default.
- W3108328433 hasAuthorship W3108328433A5082045716 @default.
- W3108328433 hasConcept C108583219 @default.
- W3108328433 hasConcept C111030470 @default.
- W3108328433 hasConcept C119857082 @default.
- W3108328433 hasConcept C12267149 @default.
- W3108328433 hasConcept C154945302 @default.
- W3108328433 hasConcept C160735492 @default.
- W3108328433 hasConcept C162324750 @default.
- W3108328433 hasConcept C169258074 @default.
- W3108328433 hasConcept C177713679 @default.
- W3108328433 hasConcept C27181475 @default.
- W3108328433 hasConcept C2778827112 @default.
- W3108328433 hasConcept C2987404301 @default.
- W3108328433 hasConcept C41008148 @default.
- W3108328433 hasConcept C50522688 @default.
- W3108328433 hasConcept C50644808 @default.
- W3108328433 hasConcept C70153297 @default.
- W3108328433 hasConcept C71924100 @default.
- W3108328433 hasConcept C81363708 @default.
- W3108328433 hasConcept C84525736 @default.
- W3108328433 hasConcept C95623464 @default.
- W3108328433 hasConceptScore W3108328433C108583219 @default.
- W3108328433 hasConceptScore W3108328433C111030470 @default.
- W3108328433 hasConceptScore W3108328433C119857082 @default.
- W3108328433 hasConceptScore W3108328433C12267149 @default.
- W3108328433 hasConceptScore W3108328433C154945302 @default.
- W3108328433 hasConceptScore W3108328433C160735492 @default.
- W3108328433 hasConceptScore W3108328433C162324750 @default.
- W3108328433 hasConceptScore W3108328433C169258074 @default.
- W3108328433 hasConceptScore W3108328433C177713679 @default.
- W3108328433 hasConceptScore W3108328433C27181475 @default.
- W3108328433 hasConceptScore W3108328433C2778827112 @default.
- W3108328433 hasConceptScore W3108328433C2987404301 @default.
- W3108328433 hasConceptScore W3108328433C41008148 @default.
- W3108328433 hasConceptScore W3108328433C50522688 @default.
- W3108328433 hasConceptScore W3108328433C50644808 @default.
- W3108328433 hasConceptScore W3108328433C70153297 @default.
- W3108328433 hasConceptScore W3108328433C71924100 @default.
- W3108328433 hasConceptScore W3108328433C81363708 @default.
- W3108328433 hasConceptScore W3108328433C84525736 @default.
- W3108328433 hasConceptScore W3108328433C95623464 @default.
- W3108328433 hasIssue "4" @default.
- W3108328433 hasLocation W31083284331 @default.
- W3108328433 hasOpenAccess W3108328433 @default.
- W3108328433 hasPrimaryLocation W31083284331 @default.
- W3108328433 hasRelatedWork W3021430260 @default.
- W3108328433 hasRelatedWork W3080602699 @default.
- W3108328433 hasRelatedWork W3108328433 @default.
- W3108328433 hasRelatedWork W3127425528 @default.
- W3108328433 hasRelatedWork W3211546796 @default.
- W3108328433 hasRelatedWork W4249229055 @default.
- W3108328433 hasRelatedWork W4281616679 @default.
- W3108328433 hasRelatedWork W4308191010 @default.
- W3108328433 hasRelatedWork W4311106074 @default.