Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108334435> ?p ?o ?g. }
- W3108334435 endingPage "116343" @default.
- W3108334435 startingPage "116343" @default.
- W3108334435 abstract "Diesel engine parameter prediction became a topic of interest in recent years, along with the development of condition-based maintenance, and is now considered a key instrument for engine diagnosis research. This contribution compares two different approaches for diesel engine performance prediction: thermodynamic modelling and artificial neural networks (ANNs). The thermodynamic modelling was developed using AVL Boost™ software simulating a single-cylinder diesel engine with different engine loads and operating conditions. The ANN modelling was conducted by comparing two efficient training algorithms to achieve the best prediction performance, with the ANN structure parameters determined by network error analysis. Both models’ prediction accuracy was verified by a single-cylinder engine test bench operating under real conditions. The adaptability and robustness of the two approaches was studied for the whole engine load spectrum, comparing predicted values to experimental measurements. Both prediction tools, ANN and thermodynamic modelling, proved to be reliable for engine performance and emissions prediction. In both models brake-specific fuel consumption (BSFC), exhaust gas temperature (Texh), carbon monoxide (CO) and nitrogen oxides (NOx) were predicted using brake mean effective pressure (BMEP) and engine speed as inputs. ANN show higher accuracy for BSFC prediction in all engine loads, and Texh prediction accuracy is better for ANN when dealing with medium to high loads, while the thermodynamic model shows better results when dealing with medium to low loads. CO is better predicted by the thermodynamic model except for the highest engine loads, and NOx predictions present high accuracy in both models, except for the lowest loads. Calculation time is lower for ANN, but the thermodynamic model provides additional performance results (i.e. combustion pressure tracing and associated values)." @default.
- W3108334435 created "2020-12-07" @default.
- W3108334435 creator A5011728129 @default.
- W3108334435 creator A5024128917 @default.
- W3108334435 creator A5026226657 @default.
- W3108334435 creator A5040095983 @default.
- W3108334435 date "2021-02-01" @default.
- W3108334435 modified "2023-10-15" @default.
- W3108334435 title "Comparative performance and emissions assessments of a single-cylinder diesel engine using artificial neural network and thermodynamic simulation" @default.
- W3108334435 cites W1577674660 @default.
- W3108334435 cites W1946330067 @default.
- W3108334435 cites W1973478487 @default.
- W3108334435 cites W1974707715 @default.
- W3108334435 cites W1981240940 @default.
- W3108334435 cites W1987323548 @default.
- W3108334435 cites W1987450917 @default.
- W3108334435 cites W1996122683 @default.
- W3108334435 cites W1998164713 @default.
- W3108334435 cites W2005902592 @default.
- W3108334435 cites W2007374201 @default.
- W3108334435 cites W2012982811 @default.
- W3108334435 cites W2015150103 @default.
- W3108334435 cites W2015330329 @default.
- W3108334435 cites W2034330903 @default.
- W3108334435 cites W2042460614 @default.
- W3108334435 cites W2056899064 @default.
- W3108334435 cites W2072629689 @default.
- W3108334435 cites W2073515924 @default.
- W3108334435 cites W2074710355 @default.
- W3108334435 cites W2098535269 @default.
- W3108334435 cites W2125292900 @default.
- W3108334435 cites W2178200545 @default.
- W3108334435 cites W2300045829 @default.
- W3108334435 cites W2300506594 @default.
- W3108334435 cites W2465741172 @default.
- W3108334435 cites W2526884187 @default.
- W3108334435 cites W2556142122 @default.
- W3108334435 cites W2586379817 @default.
- W3108334435 cites W2614960127 @default.
- W3108334435 cites W2622362584 @default.
- W3108334435 cites W2770757993 @default.
- W3108334435 cites W2791136550 @default.
- W3108334435 cites W2889072430 @default.
- W3108334435 cites W2925668692 @default.
- W3108334435 cites W2944039637 @default.
- W3108334435 cites W2971756775 @default.
- W3108334435 cites W3003770170 @default.
- W3108334435 cites W3007211864 @default.
- W3108334435 cites W3023449395 @default.
- W3108334435 cites W3037049638 @default.
- W3108334435 cites W385472129 @default.
- W3108334435 cites W4237728349 @default.
- W3108334435 cites W809580717 @default.
- W3108334435 cites W2334378409 @default.
- W3108334435 doi "https://doi.org/10.1016/j.applthermaleng.2020.116343" @default.
- W3108334435 hasPublicationYear "2021" @default.
- W3108334435 type Work @default.
- W3108334435 sameAs 3108334435 @default.
- W3108334435 citedByCount "18" @default.
- W3108334435 countsByYear W31083344352021 @default.
- W3108334435 countsByYear W31083344352022 @default.
- W3108334435 countsByYear W31083344352023 @default.
- W3108334435 crossrefType "journal-article" @default.
- W3108334435 hasAuthorship W3108334435A5011728129 @default.
- W3108334435 hasAuthorship W3108334435A5024128917 @default.
- W3108334435 hasAuthorship W3108334435A5026226657 @default.
- W3108334435 hasAuthorship W3108334435A5040095983 @default.
- W3108334435 hasConcept C119857082 @default.
- W3108334435 hasConcept C127413603 @default.
- W3108334435 hasConcept C128143373 @default.
- W3108334435 hasConcept C171146098 @default.
- W3108334435 hasConcept C192843390 @default.
- W3108334435 hasConcept C25797200 @default.
- W3108334435 hasConcept C2777115002 @default.
- W3108334435 hasConcept C2780804531 @default.
- W3108334435 hasConcept C2780999251 @default.
- W3108334435 hasConcept C41008148 @default.
- W3108334435 hasConcept C44154836 @default.
- W3108334435 hasConcept C45882903 @default.
- W3108334435 hasConcept C50644808 @default.
- W3108334435 hasConcept C511840579 @default.
- W3108334435 hasConcept C73081478 @default.
- W3108334435 hasConceptScore W3108334435C119857082 @default.
- W3108334435 hasConceptScore W3108334435C127413603 @default.
- W3108334435 hasConceptScore W3108334435C128143373 @default.
- W3108334435 hasConceptScore W3108334435C171146098 @default.
- W3108334435 hasConceptScore W3108334435C192843390 @default.
- W3108334435 hasConceptScore W3108334435C25797200 @default.
- W3108334435 hasConceptScore W3108334435C2777115002 @default.
- W3108334435 hasConceptScore W3108334435C2780804531 @default.
- W3108334435 hasConceptScore W3108334435C2780999251 @default.
- W3108334435 hasConceptScore W3108334435C41008148 @default.
- W3108334435 hasConceptScore W3108334435C44154836 @default.
- W3108334435 hasConceptScore W3108334435C45882903 @default.
- W3108334435 hasConceptScore W3108334435C50644808 @default.
- W3108334435 hasConceptScore W3108334435C511840579 @default.
- W3108334435 hasConceptScore W3108334435C73081478 @default.
- W3108334435 hasFunder F4320321705 @default.