Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108343674> ?p ?o ?g. }
- W3108343674 endingPage "105899" @default.
- W3108343674 startingPage "105899" @default.
- W3108343674 abstract "The proliferation of digital textual archives in the transportation safety domain makes it imperative for the inventions of efficient ways of extracting information from the textual data sources. The present study aims at utilizing crash narratives complemented by crash metadata to discern the prevalence and co-occurrence of themes that contribute to crash incidents. Ten years (2009–2018) of Michigan traffic fatal crash narratives were used as a case study. The structural topic modeling (STM) and network topology analysis were used to generate and examine the prevalence and interaction of themes from the crash narratives that were mainly categorized into pre-crash events, crash locations and involved parties in the traffic crashes. The main advantage of the STM over the other topic modeling approaches is that it allows the researchers to discover themes from documents and estimate how the topic relates to the document metadata. Topics with the highest prevalence for the angle, head-on, rear-end, sideswipe and single motor vehicle crashes were crash at stop-sign, crossing the centerline, unable to stop, lane change maneuver and run-off-road crash, respectively. Eigenvector centrality measure in network topology showed that event-related topics were consistently central in articulating the crash occurrence. The centrality and association between topics varied across crash types. The efficacy of generated topics in classifying crashes by type was tested using a machine learning algorithm, Random Forest. The classification accuracy in the held-out sample ranged between 89.3 % for sideswipe crashes to 99.2 % for single motor vehicle crashes. High classification accuracy suggests that automation of crash typing and consistency checks can be accomplished effectively by using extracted latent themes from the crash narratives." @default.
- W3108343674 created "2020-12-07" @default.
- W3108343674 creator A5007755122 @default.
- W3108343674 creator A5020636933 @default.
- W3108343674 creator A5038464425 @default.
- W3108343674 creator A5044476918 @default.
- W3108343674 date "2021-02-01" @default.
- W3108343674 modified "2023-09-26" @default.
- W3108343674 title "Discovering latent themes in traffic fatal crash narratives using text mining analytics and network topology" @default.
- W3108343674 cites W1849549568 @default.
- W3108343674 cites W1979698549 @default.
- W3108343674 cites W1979975160 @default.
- W3108343674 cites W1985101747 @default.
- W3108343674 cites W2017260504 @default.
- W3108343674 cites W2022532102 @default.
- W3108343674 cites W2023059085 @default.
- W3108343674 cites W2072644219 @default.
- W3108343674 cites W2075715547 @default.
- W3108343674 cites W2081137908 @default.
- W3108343674 cites W2083539636 @default.
- W3108343674 cites W2096974619 @default.
- W3108343674 cites W2116972675 @default.
- W3108343674 cites W2138566015 @default.
- W3108343674 cites W2223092947 @default.
- W3108343674 cites W2287139952 @default.
- W3108343674 cites W2290484984 @default.
- W3108343674 cites W2306119308 @default.
- W3108343674 cites W2338179207 @default.
- W3108343674 cites W2554630140 @default.
- W3108343674 cites W2635488674 @default.
- W3108343674 cites W2781571166 @default.
- W3108343674 cites W2783918517 @default.
- W3108343674 cites W2793870512 @default.
- W3108343674 cites W2796416037 @default.
- W3108343674 cites W2885783164 @default.
- W3108343674 cites W2904161069 @default.
- W3108343674 cites W2933990579 @default.
- W3108343674 cites W2936065711 @default.
- W3108343674 cites W2966304865 @default.
- W3108343674 cites W3008502799 @default.
- W3108343674 cites W3013902092 @default.
- W3108343674 cites W3099640513 @default.
- W3108343674 doi "https://doi.org/10.1016/j.aap.2020.105899" @default.
- W3108343674 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33285445" @default.
- W3108343674 hasPublicationYear "2021" @default.
- W3108343674 type Work @default.
- W3108343674 sameAs 3108343674 @default.
- W3108343674 citedByCount "21" @default.
- W3108343674 countsByYear W31083436742021 @default.
- W3108343674 countsByYear W31083436742022 @default.
- W3108343674 countsByYear W31083436742023 @default.
- W3108343674 crossrefType "journal-article" @default.
- W3108343674 hasAuthorship W3108343674A5007755122 @default.
- W3108343674 hasAuthorship W3108343674A5020636933 @default.
- W3108343674 hasAuthorship W3108343674A5038464425 @default.
- W3108343674 hasAuthorship W3108343674A5044476918 @default.
- W3108343674 hasConcept C105795698 @default.
- W3108343674 hasConcept C119857082 @default.
- W3108343674 hasConcept C127413603 @default.
- W3108343674 hasConcept C136764020 @default.
- W3108343674 hasConcept C138885662 @default.
- W3108343674 hasConcept C154945302 @default.
- W3108343674 hasConcept C183469790 @default.
- W3108343674 hasConcept C199033989 @default.
- W3108343674 hasConcept C199360897 @default.
- W3108343674 hasConcept C22212356 @default.
- W3108343674 hasConcept C2522767166 @default.
- W3108343674 hasConcept C2780591428 @default.
- W3108343674 hasConcept C3017944768 @default.
- W3108343674 hasConcept C33923547 @default.
- W3108343674 hasConcept C38652104 @default.
- W3108343674 hasConcept C41008148 @default.
- W3108343674 hasConcept C41895202 @default.
- W3108343674 hasConcept C53811970 @default.
- W3108343674 hasConcept C71924100 @default.
- W3108343674 hasConcept C93518851 @default.
- W3108343674 hasConcept C99454951 @default.
- W3108343674 hasConceptScore W3108343674C105795698 @default.
- W3108343674 hasConceptScore W3108343674C119857082 @default.
- W3108343674 hasConceptScore W3108343674C127413603 @default.
- W3108343674 hasConceptScore W3108343674C136764020 @default.
- W3108343674 hasConceptScore W3108343674C138885662 @default.
- W3108343674 hasConceptScore W3108343674C154945302 @default.
- W3108343674 hasConceptScore W3108343674C183469790 @default.
- W3108343674 hasConceptScore W3108343674C199033989 @default.
- W3108343674 hasConceptScore W3108343674C199360897 @default.
- W3108343674 hasConceptScore W3108343674C22212356 @default.
- W3108343674 hasConceptScore W3108343674C2522767166 @default.
- W3108343674 hasConceptScore W3108343674C2780591428 @default.
- W3108343674 hasConceptScore W3108343674C3017944768 @default.
- W3108343674 hasConceptScore W3108343674C33923547 @default.
- W3108343674 hasConceptScore W3108343674C38652104 @default.
- W3108343674 hasConceptScore W3108343674C41008148 @default.
- W3108343674 hasConceptScore W3108343674C41895202 @default.
- W3108343674 hasConceptScore W3108343674C53811970 @default.
- W3108343674 hasConceptScore W3108343674C71924100 @default.
- W3108343674 hasConceptScore W3108343674C93518851 @default.
- W3108343674 hasConceptScore W3108343674C99454951 @default.