Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108420611> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3108420611 endingPage "86" @default.
- W3108420611 startingPage "76" @default.
- W3108420611 abstract "The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers due to the less secure nature of the devices. The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization’s network also increases the risk of attacks. In order to address this threat, organizations often implement security policies in which only the connection of white-listed IoT devices is permitted. To monitor adherence to such policies and protect their networks, organizations must be able to identify the IoT devices connected to their networks and, more specifically, to identify connected IoT devices that are not on the white-list (unknown devices). In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network. In contrast to previous work, our approach does not require that complex feature engineering be applied on the network traffic, since we represent the “communication behavior” of IoT devices using small images built from the IoT devices’ network traffic payloads. In our experiments, we trained a multiclass classifier on a publicly available dataset, successfully identifying 10 different IoT devices and the traffic of smartphones and computers, with over 99% accuracy. We also trained multiclass classifiers to detect unauthorized IoT devices connected to the network, achieving over 99% overall average detection accuracy." @default.
- W3108420611 created "2020-12-07" @default.
- W3108420611 creator A5044304377 @default.
- W3108420611 creator A5072913672 @default.
- W3108420611 date "2020-01-01" @default.
- W3108420611 modified "2023-09-23" @default.
- W3108420611 title "IoT Device Identification Using Deep Learning." @default.
- W3108420611 hasPublicationYear "2020" @default.
- W3108420611 type Work @default.
- W3108420611 sameAs 3108420611 @default.
- W3108420611 citedByCount "1" @default.
- W3108420611 countsByYear W31084206112021 @default.
- W3108420611 crossrefType "journal-article" @default.
- W3108420611 hasAuthorship W3108420611A5044304377 @default.
- W3108420611 hasAuthorship W3108420611A5072913672 @default.
- W3108420611 hasConcept C116834253 @default.
- W3108420611 hasConcept C136764020 @default.
- W3108420611 hasConcept C154945302 @default.
- W3108420611 hasConcept C159631557 @default.
- W3108420611 hasConcept C186967261 @default.
- W3108420611 hasConcept C26517878 @default.
- W3108420611 hasConcept C2778282719 @default.
- W3108420611 hasConcept C31258907 @default.
- W3108420611 hasConcept C38652104 @default.
- W3108420611 hasConcept C41008148 @default.
- W3108420611 hasConcept C59822182 @default.
- W3108420611 hasConcept C81860439 @default.
- W3108420611 hasConcept C86803240 @default.
- W3108420611 hasConcept C95623464 @default.
- W3108420611 hasConceptScore W3108420611C116834253 @default.
- W3108420611 hasConceptScore W3108420611C136764020 @default.
- W3108420611 hasConceptScore W3108420611C154945302 @default.
- W3108420611 hasConceptScore W3108420611C159631557 @default.
- W3108420611 hasConceptScore W3108420611C186967261 @default.
- W3108420611 hasConceptScore W3108420611C26517878 @default.
- W3108420611 hasConceptScore W3108420611C2778282719 @default.
- W3108420611 hasConceptScore W3108420611C31258907 @default.
- W3108420611 hasConceptScore W3108420611C38652104 @default.
- W3108420611 hasConceptScore W3108420611C41008148 @default.
- W3108420611 hasConceptScore W3108420611C59822182 @default.
- W3108420611 hasConceptScore W3108420611C81860439 @default.
- W3108420611 hasConceptScore W3108420611C86803240 @default.
- W3108420611 hasConceptScore W3108420611C95623464 @default.
- W3108420611 hasLocation W31084206111 @default.
- W3108420611 hasOpenAccess W3108420611 @default.
- W3108420611 hasPrimaryLocation W31084206111 @default.
- W3108420611 hasRelatedWork W2805674901 @default.
- W3108420611 hasRelatedWork W2808761850 @default.
- W3108420611 hasRelatedWork W2896318849 @default.
- W3108420611 hasRelatedWork W2940216988 @default.
- W3108420611 hasRelatedWork W2944303438 @default.
- W3108420611 hasRelatedWork W2969266863 @default.
- W3108420611 hasRelatedWork W2982540247 @default.
- W3108420611 hasRelatedWork W2990242243 @default.
- W3108420611 hasRelatedWork W3000644169 @default.
- W3108420611 hasRelatedWork W3011238869 @default.
- W3108420611 hasRelatedWork W3015234833 @default.
- W3108420611 hasRelatedWork W3024333746 @default.
- W3108420611 hasRelatedWork W3046098070 @default.
- W3108420611 hasRelatedWork W3091534692 @default.
- W3108420611 hasRelatedWork W3094506904 @default.
- W3108420611 hasRelatedWork W3100090890 @default.
- W3108420611 hasRelatedWork W3103998378 @default.
- W3108420611 hasRelatedWork W3154252585 @default.
- W3108420611 hasRelatedWork W3209255507 @default.
- W3108420611 hasRelatedWork W3211671457 @default.
- W3108420611 isParatext "false" @default.
- W3108420611 isRetracted "false" @default.
- W3108420611 magId "3108420611" @default.
- W3108420611 workType "article" @default.