Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108440325> ?p ?o ?g. }
- W3108440325 abstract "We review various theoretical methods that have been used in recent years to calculate dynamical correlation functions of many-body systems. Time-dependent correlation functions and their associated frequency spectral densities are the quantities of interest, for they play a central role in both the theoretical and experimental understanding of dynamic properties. In particular, dynamic correlation functions appear in the fluctuation-dissipation theorem, where the response of a many-body system to an external perturbation is given in terms of the relaxation function of the unperturbed system, provided the disturbance is small. The calculation of the relaxation function is rather difficult in most cases of interest, except for a few examples where exact analytic expressions are allowed. For most of systems of interest approximation schemes must be used. The method of recurrence relation has, at its foundation, the solution of Heisenberg equation of motion of an operator in a many-body interacting system. Insights have been gained from theorems that were discovered with that method. For instance, the absence of pure exponential behavior for the relaxation functions of any Hamiltonian system. The method of recurrence relations was used in quantum systems such as dense electron gas, transverse Ising model, Heisenberg model, XY model, Heisenberg model with Dzyaloshinskii-Moriya interactions, as well as classical harmonic oscillator chains. Effects of disorder were considered in some of those systems. In the cases where analytical solutions were not feasible, approximation schemes were used, but are highly model-dependent. Another important approach is the numericallly exact diagonalizaton method. It is used in finite-sized systems, which sometimes provides very reliable information of the dynamics at the infinite-size limit. In this work, we discuss the most relevant applications of the method of recurrence relations and numerical calculations based on exact diagonalizations. The method of recurrence relations relies on the solution to the coefficients of a continued fraction for the Laplace transformed relaxation function. The calculation of those coefficients becomes very involved and, only a few cases offer exact solution. We shall concentrate our efforts on the cases where extrapolation schemes must be used to obtain solutions for long times (or low frequency) regimes. We also cover numerical work based on the exact diagonalization of finite sized systems. The numerical work provides some thermodynamically exact results and identifies some difficulties intrinsic to the method of recurrence relations." @default.
- W3108440325 created "2020-12-07" @default.
- W3108440325 creator A5045008238 @default.
- W3108440325 creator A5089245815 @default.
- W3108440325 date "2020-11-26" @default.
- W3108440325 modified "2023-10-17" @default.
- W3108440325 title "Recent Advances in the Calculation of Dynamical Correlation Functions" @default.
- W3108440325 cites W1967651317 @default.
- W3108440325 cites W1968369536 @default.
- W3108440325 cites W1968910532 @default.
- W3108440325 cites W1981629484 @default.
- W3108440325 cites W1982012324 @default.
- W3108440325 cites W1982161875 @default.
- W3108440325 cites W1982209618 @default.
- W3108440325 cites W1982230677 @default.
- W3108440325 cites W1984332492 @default.
- W3108440325 cites W1985907853 @default.
- W3108440325 cites W1986221810 @default.
- W3108440325 cites W1986834496 @default.
- W3108440325 cites W1990021629 @default.
- W3108440325 cites W1992279897 @default.
- W3108440325 cites W1992421879 @default.
- W3108440325 cites W1996423371 @default.
- W3108440325 cites W2000878277 @default.
- W3108440325 cites W2001556672 @default.
- W3108440325 cites W2007327884 @default.
- W3108440325 cites W2009078465 @default.
- W3108440325 cites W2012909104 @default.
- W3108440325 cites W2014548817 @default.
- W3108440325 cites W2014619241 @default.
- W3108440325 cites W2017630756 @default.
- W3108440325 cites W2018133492 @default.
- W3108440325 cites W2018763953 @default.
- W3108440325 cites W2019639408 @default.
- W3108440325 cites W2020491985 @default.
- W3108440325 cites W2022219235 @default.
- W3108440325 cites W2024382942 @default.
- W3108440325 cites W2024656550 @default.
- W3108440325 cites W2025274990 @default.
- W3108440325 cites W2029346887 @default.
- W3108440325 cites W2029514429 @default.
- W3108440325 cites W2032872821 @default.
- W3108440325 cites W2033173200 @default.
- W3108440325 cites W2033257684 @default.
- W3108440325 cites W2033548704 @default.
- W3108440325 cites W2034804744 @default.
- W3108440325 cites W2038168954 @default.
- W3108440325 cites W2041102331 @default.
- W3108440325 cites W2043291625 @default.
- W3108440325 cites W2043561406 @default.
- W3108440325 cites W2045223864 @default.
- W3108440325 cites W2045880931 @default.
- W3108440325 cites W2048165623 @default.
- W3108440325 cites W2050730625 @default.
- W3108440325 cites W2052398080 @default.
- W3108440325 cites W2056800156 @default.
- W3108440325 cites W2067482228 @default.
- W3108440325 cites W2071154079 @default.
- W3108440325 cites W2071184821 @default.
- W3108440325 cites W2072956720 @default.
- W3108440325 cites W2073540788 @default.
- W3108440325 cites W2073982308 @default.
- W3108440325 cites W2076602648 @default.
- W3108440325 cites W2078075487 @default.
- W3108440325 cites W2078520087 @default.
- W3108440325 cites W2080954673 @default.
- W3108440325 cites W2082247174 @default.
- W3108440325 cites W2086734776 @default.
- W3108440325 cites W2087716134 @default.
- W3108440325 cites W2088081187 @default.
- W3108440325 cites W2089557703 @default.
- W3108440325 cites W2090830293 @default.
- W3108440325 cites W2093369674 @default.
- W3108440325 cites W2093805744 @default.
- W3108440325 cites W2094009053 @default.
- W3108440325 cites W2095230592 @default.
- W3108440325 cites W2114894119 @default.
- W3108440325 cites W2117675481 @default.
- W3108440325 cites W2122737992 @default.
- W3108440325 cites W2143423258 @default.
- W3108440325 cites W2148963778 @default.
- W3108440325 cites W2150011551 @default.
- W3108440325 cites W2154348345 @default.
- W3108440325 cites W2158261038 @default.
- W3108440325 cites W2162320993 @default.
- W3108440325 cites W2209216411 @default.
- W3108440325 cites W2265450138 @default.
- W3108440325 cites W2335379220 @default.
- W3108440325 cites W2340756570 @default.
- W3108440325 cites W2359374145 @default.
- W3108440325 cites W2410185433 @default.
- W3108440325 cites W2437778695 @default.
- W3108440325 cites W2474117234 @default.
- W3108440325 cites W2518231461 @default.
- W3108440325 cites W2611968288 @default.
- W3108440325 cites W2735806552 @default.
- W3108440325 cites W2784034024 @default.
- W3108440325 cites W2786365772 @default.
- W3108440325 cites W2897600509 @default.
- W3108440325 cites W2943806871 @default.