Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108458205> ?p ?o ?g. }
- W3108458205 endingPage "306" @default.
- W3108458205 startingPage "281" @default.
- W3108458205 abstract "Psychological research often builds on between-group comparisons of (measurements of) latent variables; for instance, to evaluate cross-cultural differences in neuroticism or mindfulness. A critical assumption in such comparative research is that the same latent variable(s) are measured in exactly the same way across all groups (i.e., measurement invariance). Otherwise, one would be comparing apples and oranges. Nowadays, measurement invariance is often tested across a large number of groups by means of multigroup factor analysis. When the assumption is untenable, one may compare group-specific measurement models to pinpoint sources of noninvariance, but the number of pairwise comparisons exponentially increases with the number of groups. This makes it hard to unravel invariances from noninvariances and for which groups they apply, and it elevates the chances of falsely detecting noninvariance. An intuitive solution is clustering the groups into a few clusters based on the measurement model parameters. Therefore, we present mixture multigroup factor analysis (MMG-FA) which clusters the groups according to a specific level of measurement invariance. Specifically, in this article, clusters of groups with metric invariance (i.e., equal factor loadings) are obtained by making the loadings cluster-specific, whereas other parameters (i.e., intercepts, factor (co)variances, residual variances) are still allowed to differ between groups within a cluster. MMG-FA was found to perform well in an extensive simulation study, but a larger sample size within groups is required for recovering more subtle loading differences. Its empirical value is illustrated for data on the social value of emotions and data on emotional acculturation. (PsycInfo Database Record (c) 2022 APA, all rights reserved)." @default.
- W3108458205 created "2020-12-07" @default.
- W3108458205 creator A5012587395 @default.
- W3108458205 creator A5032131186 @default.
- W3108458205 creator A5062580529 @default.
- W3108458205 date "2022-06-01" @default.
- W3108458205 modified "2023-10-13" @default.
- W3108458205 title "Mixture multigroup factor analysis for unraveling factor loading noninvariance across many groups." @default.
- W3108458205 cites W1567569044 @default.
- W3108458205 cites W1843018324 @default.
- W3108458205 cites W1913957972 @default.
- W3108458205 cites W1963742443 @default.
- W3108458205 cites W1965337447 @default.
- W3108458205 cites W1977775666 @default.
- W3108458205 cites W1978334959 @default.
- W3108458205 cites W1989880115 @default.
- W3108458205 cites W1993672325 @default.
- W3108458205 cites W1996314691 @default.
- W3108458205 cites W2003870468 @default.
- W3108458205 cites W2005532382 @default.
- W3108458205 cites W2006255103 @default.
- W3108458205 cites W2008840019 @default.
- W3108458205 cites W2013018706 @default.
- W3108458205 cites W2013313241 @default.
- W3108458205 cites W2016464950 @default.
- W3108458205 cites W2017526008 @default.
- W3108458205 cites W2018516812 @default.
- W3108458205 cites W2025365561 @default.
- W3108458205 cites W2028743300 @default.
- W3108458205 cites W2033029828 @default.
- W3108458205 cites W2033252615 @default.
- W3108458205 cites W2034108143 @default.
- W3108458205 cites W2035963313 @default.
- W3108458205 cites W2040857508 @default.
- W3108458205 cites W2041094138 @default.
- W3108458205 cites W2041960457 @default.
- W3108458205 cites W2042748046 @default.
- W3108458205 cites W2051961221 @default.
- W3108458205 cites W2055176818 @default.
- W3108458205 cites W2057667667 @default.
- W3108458205 cites W2065547990 @default.
- W3108458205 cites W2071666535 @default.
- W3108458205 cites W2071813414 @default.
- W3108458205 cites W2074526772 @default.
- W3108458205 cites W2083096971 @default.
- W3108458205 cites W2083809635 @default.
- W3108458205 cites W2085067988 @default.
- W3108458205 cites W2088861238 @default.
- W3108458205 cites W2089871805 @default.
- W3108458205 cites W2090330784 @default.
- W3108458205 cites W2090341320 @default.
- W3108458205 cites W2094142183 @default.
- W3108458205 cites W2097369841 @default.
- W3108458205 cites W2099413148 @default.
- W3108458205 cites W2103147828 @default.
- W3108458205 cites W2104710424 @default.
- W3108458205 cites W2116244462 @default.
- W3108458205 cites W2121567424 @default.
- W3108458205 cites W2122376319 @default.
- W3108458205 cites W2123543055 @default.
- W3108458205 cites W2127406580 @default.
- W3108458205 cites W2130653485 @default.
- W3108458205 cites W2133097426 @default.
- W3108458205 cites W2137945018 @default.
- W3108458205 cites W2145319139 @default.
- W3108458205 cites W2146177007 @default.
- W3108458205 cites W2147782195 @default.
- W3108458205 cites W2148360926 @default.
- W3108458205 cites W2155022159 @default.
- W3108458205 cites W2155377619 @default.
- W3108458205 cites W2157335584 @default.
- W3108458205 cites W2157438378 @default.
- W3108458205 cites W2165782651 @default.
- W3108458205 cites W2166778376 @default.
- W3108458205 cites W2167673365 @default.
- W3108458205 cites W2168175751 @default.
- W3108458205 cites W2169453039 @default.
- W3108458205 cites W2206266809 @default.
- W3108458205 cites W2784954700 @default.
- W3108458205 cites W2805365218 @default.
- W3108458205 cites W2928587688 @default.
- W3108458205 cites W3021353408 @default.
- W3108458205 cites W3951449 @default.
- W3108458205 cites W615644768 @default.
- W3108458205 doi "https://doi.org/10.1037/met0000355" @default.
- W3108458205 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33271027" @default.
- W3108458205 hasPublicationYear "2022" @default.
- W3108458205 type Work @default.
- W3108458205 sameAs 3108458205 @default.
- W3108458205 citedByCount "7" @default.
- W3108458205 countsByYear W31084582052021 @default.
- W3108458205 countsByYear W31084582052022 @default.
- W3108458205 countsByYear W31084582052023 @default.
- W3108458205 crossrefType "journal-article" @default.
- W3108458205 hasAuthorship W3108458205A5012587395 @default.
- W3108458205 hasAuthorship W3108458205A5032131186 @default.
- W3108458205 hasAuthorship W3108458205A5062580529 @default.
- W3108458205 hasBestOaLocation W31084582052 @default.