Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108484983> ?p ?o ?g. }
- W3108484983 endingPage "104161" @default.
- W3108484983 startingPage "104161" @default.
- W3108484983 abstract "Random forests (RF) is a widely used machine-learning algorithm, and outperforms many other machine learning algorithms in prediction-accuracy. But it is rarely used for predicting causes of death (COD) in cancer patients. On the other hand, multicategory COD are difficult to classify in lung cancer patients, largely because they have multiple labels (versus binary labels).We tuned RF algorithms to classify 5-category COD among the lung cancer patients in the surveillance, epidemiology and end results-18, whose lung cancers were diagnosed in 2004, for the completeness in their follow-up. The patients were randomly divided into training and validation sets (1:1 and 4:1 sample-splits). We compared the prediction accuracy of the tuned RF and multinomial logistic regression (MLR) models.We included 42,257 qualified lung cancers in the database. The COD were lung cancer (72.41%), other causes or alive (14.43%), non-lung cancer (6.85%), cardiovascular disease (5.35%), and infection (0.96%). The tuned RF model with 300 iterations and 10 variables outperformed the MLR model (accuracy = 69.8% vs 64.6%, 1:1 sample-split), while 4:1 sample-split produced lower prediction-accuracy than 1:1 sample-split. The top-10 important factors in the RF model were sex, chemotherapy status, age (65+ vs < 65 years), radiotherapy status, nodal status, T category, histology type and laterality, all of which except T category and laterality were also important in MLR model.We tuned RF models to predict 5-category CODs in lung cancer patients, and show RF outperforms MLR in prediction accuracy. We also identified the factors associated with these COD." @default.
- W3108484983 created "2020-12-07" @default.
- W3108484983 creator A5005424988 @default.
- W3108484983 creator A5022817844 @default.
- W3108484983 creator A5046441324 @default.
- W3108484983 creator A5055569148 @default.
- W3108484983 creator A5059651567 @default.
- W3108484983 creator A5083023442 @default.
- W3108484983 creator A5087545381 @default.
- W3108484983 date "2021-02-01" @default.
- W3108484983 modified "2023-10-18" @default.
- W3108484983 title "Predict multicategory causes of death in lung cancer patients using clinicopathologic factors" @default.
- W3108484983 cites W1483538807 @default.
- W3108484983 cites W1828220022 @default.
- W3108484983 cites W1905833375 @default.
- W3108484983 cites W1915129189 @default.
- W3108484983 cites W1999954155 @default.
- W3108484983 cites W2002391649 @default.
- W3108484983 cites W2004085087 @default.
- W3108484983 cites W2047810541 @default.
- W3108484983 cites W2083645756 @default.
- W3108484983 cites W2095649738 @default.
- W3108484983 cites W2138137046 @default.
- W3108484983 cites W2138290126 @default.
- W3108484983 cites W2166912588 @default.
- W3108484983 cites W2251438188 @default.
- W3108484983 cites W2509464726 @default.
- W3108484983 cites W2554203775 @default.
- W3108484983 cites W2585958134 @default.
- W3108484983 cites W2663574681 @default.
- W3108484983 cites W2728014039 @default.
- W3108484983 cites W2734375668 @default.
- W3108484983 cites W2747304605 @default.
- W3108484983 cites W2766400120 @default.
- W3108484983 cites W2770702243 @default.
- W3108484983 cites W2911964244 @default.
- W3108484983 cites W2937464600 @default.
- W3108484983 cites W2945523588 @default.
- W3108484983 cites W2965474580 @default.
- W3108484983 cites W2968244126 @default.
- W3108484983 cites W2971173751 @default.
- W3108484983 cites W2979568964 @default.
- W3108484983 cites W2989626047 @default.
- W3108484983 cites W2992931937 @default.
- W3108484983 cites W2999417355 @default.
- W3108484983 cites W3000288740 @default.
- W3108484983 cites W3009926465 @default.
- W3108484983 cites W3025097160 @default.
- W3108484983 cites W3040988557 @default.
- W3108484983 cites W3080458939 @default.
- W3108484983 doi "https://doi.org/10.1016/j.compbiomed.2020.104161" @default.
- W3108484983 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33307409" @default.
- W3108484983 hasPublicationYear "2021" @default.
- W3108484983 type Work @default.
- W3108484983 sameAs 3108484983 @default.
- W3108484983 citedByCount "12" @default.
- W3108484983 countsByYear W31084849832020 @default.
- W3108484983 countsByYear W31084849832021 @default.
- W3108484983 countsByYear W31084849832022 @default.
- W3108484983 countsByYear W31084849832023 @default.
- W3108484983 crossrefType "journal-article" @default.
- W3108484983 hasAuthorship W3108484983A5005424988 @default.
- W3108484983 hasAuthorship W3108484983A5022817844 @default.
- W3108484983 hasAuthorship W3108484983A5046441324 @default.
- W3108484983 hasAuthorship W3108484983A5055569148 @default.
- W3108484983 hasAuthorship W3108484983A5059651567 @default.
- W3108484983 hasAuthorship W3108484983A5083023442 @default.
- W3108484983 hasAuthorship W3108484983A5087545381 @default.
- W3108484983 hasBestOaLocation W31084849832 @default.
- W3108484983 hasConcept C105795698 @default.
- W3108484983 hasConcept C117568660 @default.
- W3108484983 hasConcept C119857082 @default.
- W3108484983 hasConcept C121608353 @default.
- W3108484983 hasConcept C126322002 @default.
- W3108484983 hasConcept C143998085 @default.
- W3108484983 hasConcept C151956035 @default.
- W3108484983 hasConcept C154945302 @default.
- W3108484983 hasConcept C169258074 @default.
- W3108484983 hasConcept C2776256026 @default.
- W3108484983 hasConcept C33923547 @default.
- W3108484983 hasConcept C41008148 @default.
- W3108484983 hasConcept C71924100 @default.
- W3108484983 hasConceptScore W3108484983C105795698 @default.
- W3108484983 hasConceptScore W3108484983C117568660 @default.
- W3108484983 hasConceptScore W3108484983C119857082 @default.
- W3108484983 hasConceptScore W3108484983C121608353 @default.
- W3108484983 hasConceptScore W3108484983C126322002 @default.
- W3108484983 hasConceptScore W3108484983C143998085 @default.
- W3108484983 hasConceptScore W3108484983C151956035 @default.
- W3108484983 hasConceptScore W3108484983C154945302 @default.
- W3108484983 hasConceptScore W3108484983C169258074 @default.
- W3108484983 hasConceptScore W3108484983C2776256026 @default.
- W3108484983 hasConceptScore W3108484983C33923547 @default.
- W3108484983 hasConceptScore W3108484983C41008148 @default.
- W3108484983 hasConceptScore W3108484983C71924100 @default.
- W3108484983 hasLocation W31084849831 @default.
- W3108484983 hasLocation W31084849832 @default.
- W3108484983 hasLocation W31084849833 @default.