Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108492732> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3108492732 abstract "Facial beauty prediction (FBP), which is a prediction based on the classification of human facial beauty, has been applied in some social platforms and entertainment software. However, among the various approaches to FBP, methods based convolutional network is too complicated, and traditional methods cannot achieve the desired performance. In this paper, we propose a method for FBP via deep cascade forest. This method uses multi-grained scanning to obtain the features of the image, and uses multiple random forests to enhance the features. Then multiple classifiers to form a new classifier, which is used for predicting the acquired features to complete the FBP task. This method shows the advantages of feature extraction and relatively high prediction accuracy in 10,000 facial beauty datasets (10TFBD). And we are optimised for the cascade forest part and further improved the prediction accuracy. Our experiments demonstrate the effectiveness of FBP tasks." @default.
- W3108492732 created "2020-12-07" @default.
- W3108492732 creator A5004969615 @default.
- W3108492732 creator A5007167152 @default.
- W3108492732 creator A5009147954 @default.
- W3108492732 creator A5044071855 @default.
- W3108492732 creator A5064350633 @default.
- W3108492732 creator A5067463295 @default.
- W3108492732 creator A5068745676 @default.
- W3108492732 creator A5074922762 @default.
- W3108492732 creator A5077839839 @default.
- W3108492732 creator A5078650717 @default.
- W3108492732 creator A5081248268 @default.
- W3108492732 date "2020-01-01" @default.
- W3108492732 modified "2023-10-17" @default.
- W3108492732 title "Facial beauty prediction via deep cascaded forest" @default.
- W3108492732 doi "https://doi.org/10.1504/ijhpsa.2020.10033743" @default.
- W3108492732 hasPublicationYear "2020" @default.
- W3108492732 type Work @default.
- W3108492732 sameAs 3108492732 @default.
- W3108492732 citedByCount "0" @default.
- W3108492732 crossrefType "journal-article" @default.
- W3108492732 hasAuthorship W3108492732A5004969615 @default.
- W3108492732 hasAuthorship W3108492732A5007167152 @default.
- W3108492732 hasAuthorship W3108492732A5009147954 @default.
- W3108492732 hasAuthorship W3108492732A5044071855 @default.
- W3108492732 hasAuthorship W3108492732A5064350633 @default.
- W3108492732 hasAuthorship W3108492732A5067463295 @default.
- W3108492732 hasAuthorship W3108492732A5068745676 @default.
- W3108492732 hasAuthorship W3108492732A5074922762 @default.
- W3108492732 hasAuthorship W3108492732A5077839839 @default.
- W3108492732 hasAuthorship W3108492732A5078650717 @default.
- W3108492732 hasAuthorship W3108492732A5081248268 @default.
- W3108492732 hasConcept C138885662 @default.
- W3108492732 hasConcept C153180895 @default.
- W3108492732 hasConcept C154945302 @default.
- W3108492732 hasConcept C169258074 @default.
- W3108492732 hasConcept C185592680 @default.
- W3108492732 hasConcept C199360897 @default.
- W3108492732 hasConcept C2776401178 @default.
- W3108492732 hasConcept C2777904410 @default.
- W3108492732 hasConcept C34146451 @default.
- W3108492732 hasConcept C41008148 @default.
- W3108492732 hasConcept C41895202 @default.
- W3108492732 hasConcept C43617362 @default.
- W3108492732 hasConcept C52622490 @default.
- W3108492732 hasConcept C81363708 @default.
- W3108492732 hasConcept C95623464 @default.
- W3108492732 hasConceptScore W3108492732C138885662 @default.
- W3108492732 hasConceptScore W3108492732C153180895 @default.
- W3108492732 hasConceptScore W3108492732C154945302 @default.
- W3108492732 hasConceptScore W3108492732C169258074 @default.
- W3108492732 hasConceptScore W3108492732C185592680 @default.
- W3108492732 hasConceptScore W3108492732C199360897 @default.
- W3108492732 hasConceptScore W3108492732C2776401178 @default.
- W3108492732 hasConceptScore W3108492732C2777904410 @default.
- W3108492732 hasConceptScore W3108492732C34146451 @default.
- W3108492732 hasConceptScore W3108492732C41008148 @default.
- W3108492732 hasConceptScore W3108492732C41895202 @default.
- W3108492732 hasConceptScore W3108492732C43617362 @default.
- W3108492732 hasConceptScore W3108492732C52622490 @default.
- W3108492732 hasConceptScore W3108492732C81363708 @default.
- W3108492732 hasConceptScore W3108492732C95623464 @default.
- W3108492732 hasLocation W31084927321 @default.
- W3108492732 hasOpenAccess W3108492732 @default.
- W3108492732 hasPrimaryLocation W31084927321 @default.
- W3108492732 hasRelatedWork W13310981 @default.
- W3108492732 hasRelatedWork W14536956 @default.
- W3108492732 hasRelatedWork W1781265 @default.
- W3108492732 hasRelatedWork W2582698 @default.
- W3108492732 hasRelatedWork W5319273 @default.
- W3108492732 hasRelatedWork W6364285 @default.
- W3108492732 hasRelatedWork W844961 @default.
- W3108492732 hasRelatedWork W847141 @default.
- W3108492732 hasRelatedWork W9958333 @default.
- W3108492732 hasRelatedWork W5443255 @default.
- W3108492732 isParatext "false" @default.
- W3108492732 isRetracted "false" @default.
- W3108492732 magId "3108492732" @default.
- W3108492732 workType "article" @default.