Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108726082> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3108726082 abstract "Various features can provide rich information for analysis of brain structural changes in hypertension. However, the extraction of multiple features involves complex data processing and results in long time-consuming. It is worthy of in-depth study that how to make a single feature achieves the same diagnostic effect as multiple features. Kernel ridge regression (KRR) has shown faster learning speed and generalization ability for classification tasks, which integrates multiple features as additional privileged information (PI) to help train an efficient classifier. This allows using only a single feature during test stage. In order to make the classifier effect better, the influence of sample attributes needs to be considered in the process of feature fusion. In this work, we construct a novel self-paced learning based multi-kernel KRR framework for analysis of brain structural changes in patients with different blood pressure levels. Specifically, one type of feature is taken as the main feature, and the rest of the features are first fed into the multi-kernel KRR and the output is serviced as PI. These two inputs are fed into the final KRR classifier together. Furthermore, self-paced learning is introduced to reduce the noise in multi-source data, which can prevent the model from falling into poor local solution and improve the generalization performance of classifier. Experimental results show that the proposed method can maximize the use the information of various types of features and achieve better classification performance. It suggests that the proposed self-paced based KRR can help to analyze the brain structure in patients with different blood pressure levels." @default.
- W3108726082 created "2020-12-07" @default.
- W3108726082 creator A5021953784 @default.
- W3108726082 creator A5023067779 @default.
- W3108726082 creator A5042160852 @default.
- W3108726082 creator A5047583380 @default.
- W3108726082 creator A5048487219 @default.
- W3108726082 date "2020-10-17" @default.
- W3108726082 modified "2023-09-27" @default.
- W3108726082 title "Self-paced learning based multi-kernel KRR for brain structure analysis in patients with different blood pressure levels" @default.
- W3108726082 cites W1142267407 @default.
- W3108726082 cites W1521781547 @default.
- W3108726082 cites W1969474603 @default.
- W3108726082 cites W1977775431 @default.
- W3108726082 cites W1984282561 @default.
- W3108726082 cites W1986614398 @default.
- W3108726082 cites W1987645143 @default.
- W3108726082 cites W1992905164 @default.
- W3108726082 cites W1999893542 @default.
- W3108726082 cites W2038751902 @default.
- W3108726082 cites W2058046532 @default.
- W3108726082 cites W2062163100 @default.
- W3108726082 cites W2071881327 @default.
- W3108726082 cites W2109064712 @default.
- W3108726082 cites W2114548687 @default.
- W3108726082 cites W2116717490 @default.
- W3108726082 cites W2130113740 @default.
- W3108726082 cites W2143954917 @default.
- W3108726082 cites W2151050383 @default.
- W3108726082 cites W2156304292 @default.
- W3108726082 cites W2157848968 @default.
- W3108726082 cites W2158167845 @default.
- W3108726082 cites W2175191116 @default.
- W3108726082 cites W2214871046 @default.
- W3108726082 cites W2290309368 @default.
- W3108726082 cites W2337802099 @default.
- W3108726082 cites W2395579298 @default.
- W3108726082 cites W2504618076 @default.
- W3108726082 cites W2810500540 @default.
- W3108726082 cites W2962954696 @default.
- W3108726082 cites W3023820860 @default.
- W3108726082 doi "https://doi.org/10.1109/cisp-bmei51763.2020.9263541" @default.
- W3108726082 hasPublicationYear "2020" @default.
- W3108726082 type Work @default.
- W3108726082 sameAs 3108726082 @default.
- W3108726082 citedByCount "0" @default.
- W3108726082 crossrefType "proceedings-article" @default.
- W3108726082 hasAuthorship W3108726082A5021953784 @default.
- W3108726082 hasAuthorship W3108726082A5023067779 @default.
- W3108726082 hasAuthorship W3108726082A5042160852 @default.
- W3108726082 hasAuthorship W3108726082A5047583380 @default.
- W3108726082 hasAuthorship W3108726082A5048487219 @default.
- W3108726082 hasConcept C114614502 @default.
- W3108726082 hasConcept C119857082 @default.
- W3108726082 hasConcept C153180895 @default.
- W3108726082 hasConcept C154945302 @default.
- W3108726082 hasConcept C33923547 @default.
- W3108726082 hasConcept C41008148 @default.
- W3108726082 hasConcept C52622490 @default.
- W3108726082 hasConcept C74193536 @default.
- W3108726082 hasConcept C95623464 @default.
- W3108726082 hasConceptScore W3108726082C114614502 @default.
- W3108726082 hasConceptScore W3108726082C119857082 @default.
- W3108726082 hasConceptScore W3108726082C153180895 @default.
- W3108726082 hasConceptScore W3108726082C154945302 @default.
- W3108726082 hasConceptScore W3108726082C33923547 @default.
- W3108726082 hasConceptScore W3108726082C41008148 @default.
- W3108726082 hasConceptScore W3108726082C52622490 @default.
- W3108726082 hasConceptScore W3108726082C74193536 @default.
- W3108726082 hasConceptScore W3108726082C95623464 @default.
- W3108726082 hasFunder F4320321001 @default.
- W3108726082 hasFunder F4320337504 @default.
- W3108726082 hasLocation W31087260821 @default.
- W3108726082 hasOpenAccess W3108726082 @default.
- W3108726082 hasPrimaryLocation W31087260821 @default.
- W3108726082 hasRelatedWork W2022996092 @default.
- W3108726082 hasRelatedWork W2110459882 @default.
- W3108726082 hasRelatedWork W2151022383 @default.
- W3108726082 hasRelatedWork W2188464267 @default.
- W3108726082 hasRelatedWork W2545275226 @default.
- W3108726082 hasRelatedWork W2784352036 @default.
- W3108726082 hasRelatedWork W2807311372 @default.
- W3108726082 hasRelatedWork W2905846897 @default.
- W3108726082 hasRelatedWork W2995914718 @default.
- W3108726082 hasRelatedWork W4367598285 @default.
- W3108726082 isParatext "false" @default.
- W3108726082 isRetracted "false" @default.
- W3108726082 magId "3108726082" @default.
- W3108726082 workType "article" @default.