Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108766273> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3108766273 abstract "Pulmonary diseases impact millions of lives globally and annually. The recent outbreak of the pandemic of the COVID-19, a novel pulmonary infection, has more than ever brought the attention of the research community to the machine-aided diagnosis of respiratory problems. This paper is thus an effort to exploit machine learning for classification of respiratory problems and proposes a framework that employs as much correlated information (auditory and demographic information in this work) as a dataset provides to increase the sensitivity and specificity of a diagnosing system. First, we use deep convolutional neural networks (DCNNs) to process and classify a publicly released pulmonary auditory dataset, and then we take advantage of the existing demographic information within the dataset and show that the accuracy of the pulmonary classification increases by 5% when trained on the auditory information in conjunction with the demographic information. Since the demographic data can be extracted using computer vision, we suggest using another parallel DCNN to estimate the demographic information of the subject under test visioned by the processing computer. Lastly, as a proposition to bring the healthcare system to users' fingertips, we measure deployment characteristics of the auditory DCNN model onto processing components of an NVIDIA TX2 development board." @default.
- W3108766273 created "2020-12-07" @default.
- W3108766273 creator A5002836784 @default.
- W3108766273 creator A5007957361 @default.
- W3108766273 creator A5072273516 @default.
- W3108766273 creator A5079352628 @default.
- W3108766273 creator A5080733588 @default.
- W3108766273 creator A5084010501 @default.
- W3108766273 date "2020-11-26" @default.
- W3108766273 modified "2023-09-27" @default.
- W3108766273 title "Neural Networks for Pulmonary Disease Diagnosis using Auditory and Demographic Information" @default.
- W3108766273 cites W2194775991 @default.
- W3108766273 cites W2518911984 @default.
- W3108766273 cites W2592232824 @default.
- W3108766273 cites W2593451766 @default.
- W3108766273 cites W2593815446 @default.
- W3108766273 cites W2754136846 @default.
- W3108766273 cites W2770896033 @default.
- W3108766273 cites W2911746393 @default.
- W3108766273 cites W2912223386 @default.
- W3108766273 cites W2964439653 @default.
- W3108766273 cites W2967013449 @default.
- W3108766273 cites W2967091318 @default.
- W3108766273 cites W2992420332 @default.
- W3108766273 cites W3004806247 @default.
- W3108766273 cites W3005224960 @default.
- W3108766273 cites W3006115509 @default.
- W3108766273 cites W3007859670 @default.
- W3108766273 cites W3009994579 @default.
- W3108766273 cites W3011086304 @default.
- W3108766273 cites W3012502392 @default.
- W3108766273 cites W3103935216 @default.
- W3108766273 cites W3105837102 @default.
- W3108766273 hasPublicationYear "2020" @default.
- W3108766273 type Work @default.
- W3108766273 sameAs 3108766273 @default.
- W3108766273 citedByCount "3" @default.
- W3108766273 countsByYear W31087662732020 @default.
- W3108766273 countsByYear W31087662732021 @default.
- W3108766273 crossrefType "posted-content" @default.
- W3108766273 hasAuthorship W3108766273A5002836784 @default.
- W3108766273 hasAuthorship W3108766273A5007957361 @default.
- W3108766273 hasAuthorship W3108766273A5072273516 @default.
- W3108766273 hasAuthorship W3108766273A5079352628 @default.
- W3108766273 hasAuthorship W3108766273A5080733588 @default.
- W3108766273 hasAuthorship W3108766273A5084010501 @default.
- W3108766273 hasConcept C105339364 @default.
- W3108766273 hasConcept C111919701 @default.
- W3108766273 hasConcept C119857082 @default.
- W3108766273 hasConcept C154945302 @default.
- W3108766273 hasConcept C165696696 @default.
- W3108766273 hasConcept C38652104 @default.
- W3108766273 hasConcept C41008148 @default.
- W3108766273 hasConcept C81363708 @default.
- W3108766273 hasConcept C98045186 @default.
- W3108766273 hasConceptScore W3108766273C105339364 @default.
- W3108766273 hasConceptScore W3108766273C111919701 @default.
- W3108766273 hasConceptScore W3108766273C119857082 @default.
- W3108766273 hasConceptScore W3108766273C154945302 @default.
- W3108766273 hasConceptScore W3108766273C165696696 @default.
- W3108766273 hasConceptScore W3108766273C38652104 @default.
- W3108766273 hasConceptScore W3108766273C41008148 @default.
- W3108766273 hasConceptScore W3108766273C81363708 @default.
- W3108766273 hasConceptScore W3108766273C98045186 @default.
- W3108766273 hasLocation W31087662731 @default.
- W3108766273 hasOpenAccess W3108766273 @default.
- W3108766273 hasPrimaryLocation W31087662731 @default.
- W3108766273 hasRelatedWork W2065443186 @default.
- W3108766273 hasRelatedWork W2184956279 @default.
- W3108766273 hasRelatedWork W2776922069 @default.
- W3108766273 hasRelatedWork W2890758016 @default.
- W3108766273 hasRelatedWork W2900182997 @default.
- W3108766273 hasRelatedWork W2908828888 @default.
- W3108766273 hasRelatedWork W2950563404 @default.
- W3108766273 hasRelatedWork W2988622501 @default.
- W3108766273 hasRelatedWork W3041101736 @default.
- W3108766273 hasRelatedWork W3106763172 @default.
- W3108766273 hasRelatedWork W3129737282 @default.
- W3108766273 hasRelatedWork W3130634310 @default.
- W3108766273 hasRelatedWork W3132169797 @default.
- W3108766273 hasRelatedWork W3137300000 @default.
- W3108766273 hasRelatedWork W3138415243 @default.
- W3108766273 hasRelatedWork W3157159055 @default.
- W3108766273 hasRelatedWork W3178795497 @default.
- W3108766273 hasRelatedWork W3183139303 @default.
- W3108766273 hasRelatedWork W3199899573 @default.
- W3108766273 hasRelatedWork W3202149807 @default.
- W3108766273 isParatext "false" @default.
- W3108766273 isRetracted "false" @default.
- W3108766273 magId "3108766273" @default.
- W3108766273 workType "article" @default.