Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108788903> ?p ?o ?g. }
- W3108788903 endingPage "547" @default.
- W3108788903 startingPage "526" @default.
- W3108788903 abstract "Purpose Several empirical studies have proven that emerging countries are attractive destinations for Foreign Institutional Investors (FIIs) because of high expected returns, weak market efficiency and high growth that make them attractive destination for diversification of funds. But higher expected returns come coupled with high risk arising from political and economic instability. This study aims to compare the linear (symmetric) and non-linear (asymmetric) Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models in forecasting the volatility of top five major emerging countries among E7, that is, China, India, Indonesia, Brazil and Mexico. Design/methodology/approach The volatility of financial markets of five major emerging countries has been empirically investigated for a period of two decades from January 2000 to December 2019 using univariate volatility models including GARCH 1, 1, Exponential Generalized Autoregressive Conditional Heteroscedasticity (E-GARCH 1, 1) and Threshold Generalized Autoregressive Conditional Heteroscedasticity (T-GARCH-1, 1) models. Further, to examine time-varying volatility, the distinctions of structural break have been captured in view of the global financial crisis of 2008. Thus, the period under the study has been segregated into pre- and post-crisis, that is, January 2001–December 2008 and January 2009–December 2019, respectively. Findings The findings indicate that GARCH (1, 1) model is superior to non-linear GARCH models for forecasting volatility because the effect of leverage is insignificant. China has been considered as most volatile, whereas India is volatile but positively skewed and Indonesia is the least volatile country. The results can help investors in better international diversification of their portfolio and identifying best suitable hedging opportunities. Practical implications This study can help investors to construct a more risk-adjusted returns international portfolio. Further, it adds to the scant literature available on the inconclusive debate on the choice of linear versus non-linear models to forecast market volatility. Originality/value Earlier studies related to univariate volatility models are mostly applications of the models. Only few studies have considered the robustness while applying the models. However, none of the studies to the best of the authors’ searches have considered these models for identifying the diversification opportunity among the emerging countries. Hence, this study is able to derive diversification and hedging opportunities by applying wide ranges of the statistical applications and models, that is, descriptive, correlations and univariate volatility models. It makes the study more rigorous and unique compared to the previous literature." @default.
- W3108788903 created "2020-12-07" @default.
- W3108788903 creator A5009164180 @default.
- W3108788903 creator A5044457313 @default.
- W3108788903 creator A5091253615 @default.
- W3108788903 date "2021-02-12" @default.
- W3108788903 modified "2023-09-24" @default.
- W3108788903 title "Comparison of linear and non-linear GARCH models for forecasting volatility of select emerging countries" @default.
- W3108788903 cites W1528226820 @default.
- W3108788903 cites W1965635191 @default.
- W3108788903 cites W1966268097 @default.
- W3108788903 cites W1967650431 @default.
- W3108788903 cites W1974332167 @default.
- W3108788903 cites W1978805513 @default.
- W3108788903 cites W1979575715 @default.
- W3108788903 cites W1980338498 @default.
- W3108788903 cites W1982796656 @default.
- W3108788903 cites W1984322038 @default.
- W3108788903 cites W1986718656 @default.
- W3108788903 cites W1991311094 @default.
- W3108788903 cites W1997864888 @default.
- W3108788903 cites W1998691390 @default.
- W3108788903 cites W1999814123 @default.
- W3108788903 cites W1999996900 @default.
- W3108788903 cites W2003517149 @default.
- W3108788903 cites W2010732706 @default.
- W3108788903 cites W2013109882 @default.
- W3108788903 cites W2022683303 @default.
- W3108788903 cites W2023837515 @default.
- W3108788903 cites W2026233450 @default.
- W3108788903 cites W2028965345 @default.
- W3108788903 cites W2033747554 @default.
- W3108788903 cites W2034288267 @default.
- W3108788903 cites W2039017939 @default.
- W3108788903 cites W2039774260 @default.
- W3108788903 cites W2039932642 @default.
- W3108788903 cites W2061160212 @default.
- W3108788903 cites W2073053975 @default.
- W3108788903 cites W2080172474 @default.
- W3108788903 cites W2083275936 @default.
- W3108788903 cites W2096226179 @default.
- W3108788903 cites W2127098810 @default.
- W3108788903 cites W2165145231 @default.
- W3108788903 cites W2179559013 @default.
- W3108788903 cites W2254737869 @default.
- W3108788903 cites W2316843634 @default.
- W3108788903 cites W2321208120 @default.
- W3108788903 cites W2761211442 @default.
- W3108788903 cites W2906107959 @default.
- W3108788903 cites W2907970702 @default.
- W3108788903 cites W2991727127 @default.
- W3108788903 cites W3022041122 @default.
- W3108788903 cites W3121766225 @default.
- W3108788903 cites W3122175640 @default.
- W3108788903 cites W3122232609 @default.
- W3108788903 cites W3123289511 @default.
- W3108788903 cites W3125246470 @default.
- W3108788903 cites W3125472616 @default.
- W3108788903 cites W3125962101 @default.
- W3108788903 cites W3126072850 @default.
- W3108788903 cites W41114315 @default.
- W3108788903 cites W4238492937 @default.
- W3108788903 doi "https://doi.org/10.1108/jamr-07-2020-0152" @default.
- W3108788903 hasPublicationYear "2021" @default.
- W3108788903 type Work @default.
- W3108788903 sameAs 3108788903 @default.
- W3108788903 citedByCount "15" @default.
- W3108788903 countsByYear W31087889032022 @default.
- W3108788903 countsByYear W31087889032023 @default.
- W3108788903 crossrefType "journal-article" @default.
- W3108788903 hasAuthorship W3108788903A5009164180 @default.
- W3108788903 hasAuthorship W3108788903A5044457313 @default.
- W3108788903 hasAuthorship W3108788903A5091253615 @default.
- W3108788903 hasConcept C101104100 @default.
- W3108788903 hasConcept C10138342 @default.
- W3108788903 hasConcept C106159729 @default.
- W3108788903 hasConcept C121087249 @default.
- W3108788903 hasConcept C144133560 @default.
- W3108788903 hasConcept C149782125 @default.
- W3108788903 hasConcept C162324750 @default.
- W3108788903 hasConcept C162853370 @default.
- W3108788903 hasConcept C180916674 @default.
- W3108788903 hasConcept C23922673 @default.
- W3108788903 hasConcept C2776142675 @default.
- W3108788903 hasConcept C91602232 @default.
- W3108788903 hasConceptScore W3108788903C101104100 @default.
- W3108788903 hasConceptScore W3108788903C10138342 @default.
- W3108788903 hasConceptScore W3108788903C106159729 @default.
- W3108788903 hasConceptScore W3108788903C121087249 @default.
- W3108788903 hasConceptScore W3108788903C144133560 @default.
- W3108788903 hasConceptScore W3108788903C149782125 @default.
- W3108788903 hasConceptScore W3108788903C162324750 @default.
- W3108788903 hasConceptScore W3108788903C162853370 @default.
- W3108788903 hasConceptScore W3108788903C180916674 @default.
- W3108788903 hasConceptScore W3108788903C23922673 @default.
- W3108788903 hasConceptScore W3108788903C2776142675 @default.
- W3108788903 hasConceptScore W3108788903C91602232 @default.
- W3108788903 hasIssue "4" @default.