Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108835831> ?p ?o ?g. }
- W3108835831 endingPage "3834" @default.
- W3108835831 startingPage "3834" @default.
- W3108835831 abstract "Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed, but evidence supporting their use is limited. A machine learning algorithm was developed in order to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was mortality; discharge was a competing event. Hazard ratios were obtained on the entire population, and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29, 95% confidence interval (CI) 0.11–0.75). Adjusted survival among the algorithm indicated patients was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment and mortality was observed in the general population. A 31% increase in survival at the end of the study was observed in a population of COVID-19 patients that were identified by a machine learning algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be proven to benefit from hydroxychloroquine treatment in a clinical trial." @default.
- W3108835831 created "2020-12-07" @default.
- W3108835831 creator A5016677781 @default.
- W3108835831 creator A5018209015 @default.
- W3108835831 creator A5032268509 @default.
- W3108835831 creator A5046346208 @default.
- W3108835831 creator A5046943172 @default.
- W3108835831 creator A5046974631 @default.
- W3108835831 creator A5047676849 @default.
- W3108835831 creator A5054119515 @default.
- W3108835831 creator A5066795709 @default.
- W3108835831 creator A5069510468 @default.
- W3108835831 creator A5070304475 @default.
- W3108835831 creator A5076563017 @default.
- W3108835831 creator A5083110866 @default.
- W3108835831 creator A5090197382 @default.
- W3108835831 date "2020-11-26" @default.
- W3108835831 modified "2023-10-15" @default.
- W3108835831 title "Is Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial" @default.
- W3108835831 cites W1958673254 @default.
- W3108835831 cites W1988303870 @default.
- W3108835831 cites W2029480581 @default.
- W3108835831 cites W2038981426 @default.
- W3108835831 cites W2060427373 @default.
- W3108835831 cites W2071109714 @default.
- W3108835831 cites W2087251383 @default.
- W3108835831 cites W2115045760 @default.
- W3108835831 cites W2129860849 @default.
- W3108835831 cites W2148424438 @default.
- W3108835831 cites W2169490447 @default.
- W3108835831 cites W2735301415 @default.
- W3108835831 cites W2751210758 @default.
- W3108835831 cites W3004709581 @default.
- W3108835831 cites W3006645647 @default.
- W3108835831 cites W3009389929 @default.
- W3108835831 cites W3009577418 @default.
- W3108835831 cites W3010930696 @default.
- W3108835831 cites W3011384508 @default.
- W3108835831 cites W3012379316 @default.
- W3108835831 cites W3013198879 @default.
- W3108835831 cites W3013899502 @default.
- W3108835831 cites W3014249633 @default.
- W3108835831 cites W3014504912 @default.
- W3108835831 cites W3015651609 @default.
- W3108835831 cites W3016194342 @default.
- W3108835831 cites W3016535995 @default.
- W3108835831 cites W3016626550 @default.
- W3108835831 cites W3020239101 @default.
- W3108835831 cites W3021964221 @default.
- W3108835831 cites W3023082818 @default.
- W3108835831 cites W3023346879 @default.
- W3108835831 cites W3025679229 @default.
- W3108835831 cites W3025972894 @default.
- W3108835831 cites W3032373213 @default.
- W3108835831 cites W3040366309 @default.
- W3108835831 cites W3042844071 @default.
- W3108835831 cites W3043308024 @default.
- W3108835831 cites W3044118599 @default.
- W3108835831 cites W3048733387 @default.
- W3108835831 cites W3080459392 @default.
- W3108835831 cites W3080780024 @default.
- W3108835831 cites W3087265742 @default.
- W3108835831 cites W3088354768 @default.
- W3108835831 cites W3088609942 @default.
- W3108835831 cites W3088628748 @default.
- W3108835831 cites W3090815911 @default.
- W3108835831 cites W3092732022 @default.
- W3108835831 cites W3092982314 @default.
- W3108835831 cites W4205372731 @default.
- W3108835831 doi "https://doi.org/10.3390/jcm9123834" @default.
- W3108835831 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7760047" @default.
- W3108835831 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33256141" @default.
- W3108835831 hasPublicationYear "2020" @default.
- W3108835831 type Work @default.
- W3108835831 sameAs 3108835831 @default.
- W3108835831 citedByCount "6" @default.
- W3108835831 countsByYear W31088358312021 @default.
- W3108835831 countsByYear W31088358312022 @default.
- W3108835831 crossrefType "journal-article" @default.
- W3108835831 hasAuthorship W3108835831A5016677781 @default.
- W3108835831 hasAuthorship W3108835831A5018209015 @default.
- W3108835831 hasAuthorship W3108835831A5032268509 @default.
- W3108835831 hasAuthorship W3108835831A5046346208 @default.
- W3108835831 hasAuthorship W3108835831A5046943172 @default.
- W3108835831 hasAuthorship W3108835831A5046974631 @default.
- W3108835831 hasAuthorship W3108835831A5047676849 @default.
- W3108835831 hasAuthorship W3108835831A5054119515 @default.
- W3108835831 hasAuthorship W3108835831A5066795709 @default.
- W3108835831 hasAuthorship W3108835831A5069510468 @default.
- W3108835831 hasAuthorship W3108835831A5070304475 @default.
- W3108835831 hasAuthorship W3108835831A5076563017 @default.
- W3108835831 hasAuthorship W3108835831A5083110866 @default.
- W3108835831 hasAuthorship W3108835831A5090197382 @default.
- W3108835831 hasBestOaLocation W31088358311 @default.
- W3108835831 hasConcept C10515644 @default.
- W3108835831 hasConcept C126322002 @default.
- W3108835831 hasConcept C168563851 @default.
- W3108835831 hasConcept C203092338 @default.