Matches in SemOpenAlex for { <https://semopenalex.org/work/W3108948422> ?p ?o ?g. }
- W3108948422 endingPage "1317" @default.
- W3108948422 startingPage "1305" @default.
- W3108948422 abstract "Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-end Dense Attention Fluid Network (DAFNet) for SOD in optical RSIs. A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships, and is further embedded in a Dense Attention Fluid (DAF) structure that enables shallow attention cues flow into deep layers to guide the generation of high-level feature attention maps. Specifically, the GCA module is composed of two key components, where the global feature aggregation module achieves mutual reinforcement of salient feature embeddings from any two spatial locations, and the cascaded pyramid attention module tackles the scale variation issue by building up a cascaded pyramid framework to progressively refine the attention map in a coarse-to-fine manner. In addition, we construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations, which is currently the largest publicly available benchmark. Extensive experiments demonstrate that our proposed DAFNet significantly outperforms the existing state-of-the-art SOD competitors. https://github.com/rmcong/DAFNet_TIP20" @default.
- W3108948422 created "2020-12-07" @default.
- W3108948422 creator A5008386708 @default.
- W3108948422 creator A5028127027 @default.
- W3108948422 creator A5034122071 @default.
- W3108948422 creator A5037131575 @default.
- W3108948422 creator A5063013411 @default.
- W3108948422 creator A5068837264 @default.
- W3108948422 creator A5090140944 @default.
- W3108948422 creator A5091558139 @default.
- W3108948422 date "2021-01-01" @default.
- W3108948422 modified "2023-10-14" @default.
- W3108948422 title "Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images" @default.
- W3108948422 cites W1617990436 @default.
- W3108948422 cites W1996326832 @default.
- W3108948422 cites W2047670868 @default.
- W3108948422 cites W2100470808 @default.
- W3108948422 cites W2160398355 @default.
- W3108948422 cites W2164084182 @default.
- W3108948422 cites W2245000483 @default.
- W3108948422 cites W2337762808 @default.
- W3108948422 cites W2346506533 @default.
- W3108948422 cites W2520172704 @default.
- W3108948422 cites W2534181202 @default.
- W3108948422 cites W2569272946 @default.
- W3108948422 cites W2740976805 @default.
- W3108948422 cites W2744876417 @default.
- W3108948422 cites W2745150820 @default.
- W3108948422 cites W2752782242 @default.
- W3108948422 cites W2762270259 @default.
- W3108948422 cites W2767623212 @default.
- W3108948422 cites W2770525455 @default.
- W3108948422 cites W2789619030 @default.
- W3108948422 cites W2791979332 @default.
- W3108948422 cites W2792965491 @default.
- W3108948422 cites W2793668851 @default.
- W3108948422 cites W2798791651 @default.
- W3108948422 cites W2800822850 @default.
- W3108948422 cites W2807746031 @default.
- W3108948422 cites W2894469712 @default.
- W3108948422 cites W2897809294 @default.
- W3108948422 cites W2928165649 @default.
- W3108948422 cites W2939217524 @default.
- W3108948422 cites W2943125866 @default.
- W3108948422 cites W2943535444 @default.
- W3108948422 cites W2944053494 @default.
- W3108948422 cites W2945874778 @default.
- W3108948422 cites W2948500402 @default.
- W3108948422 cites W2961348656 @default.
- W3108948422 cites W2963299740 @default.
- W3108948422 cites W2963516811 @default.
- W3108948422 cites W2963572583 @default.
- W3108948422 cites W2963706010 @default.
- W3108948422 cites W2963868681 @default.
- W3108948422 cites W2969377765 @default.
- W3108948422 cites W2990984982 @default.
- W3108948422 cites W2997316506 @default.
- W3108948422 cites W3006465601 @default.
- W3108948422 cites W3034185160 @default.
- W3108948422 cites W3034965397 @default.
- W3108948422 cites W3035290198 @default.
- W3108948422 cites W3084740725 @default.
- W3108948422 cites W3098389804 @default.
- W3108948422 cites W3102864715 @default.
- W3108948422 cites W3105291825 @default.
- W3108948422 cites W3108608656 @default.
- W3108948422 cites W4239147634 @default.
- W3108948422 doi "https://doi.org/10.1109/tip.2020.3042084" @default.
- W3108948422 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33306467" @default.
- W3108948422 hasPublicationYear "2021" @default.
- W3108948422 type Work @default.
- W3108948422 sameAs 3108948422 @default.
- W3108948422 citedByCount "128" @default.
- W3108948422 countsByYear W31089484222020 @default.
- W3108948422 countsByYear W31089484222021 @default.
- W3108948422 countsByYear W31089484222022 @default.
- W3108948422 countsByYear W31089484222023 @default.
- W3108948422 crossrefType "journal-article" @default.
- W3108948422 hasAuthorship W3108948422A5008386708 @default.
- W3108948422 hasAuthorship W3108948422A5028127027 @default.
- W3108948422 hasAuthorship W3108948422A5034122071 @default.
- W3108948422 hasAuthorship W3108948422A5037131575 @default.
- W3108948422 hasAuthorship W3108948422A5063013411 @default.
- W3108948422 hasAuthorship W3108948422A5068837264 @default.
- W3108948422 hasAuthorship W3108948422A5090140944 @default.
- W3108948422 hasAuthorship W3108948422A5091558139 @default.
- W3108948422 hasBestOaLocation W31089484222 @default.
- W3108948422 hasConcept C115961682 @default.
- W3108948422 hasConcept C120665830 @default.
- W3108948422 hasConcept C121332964 @default.
- W3108948422 hasConcept C127313418 @default.
- W3108948422 hasConcept C13280743 @default.
- W3108948422 hasConcept C138885662 @default.
- W3108948422 hasConcept C142575187 @default.
- W3108948422 hasConcept C151730666 @default.
- W3108948422 hasConcept C153180895 @default.
- W3108948422 hasConcept C154945302 @default.
- W3108948422 hasConcept C155542232 @default.