Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109046922> ?p ?o ?g. }
- W3109046922 abstract "Abstract Background Malaria is still a major global health burden, with more than 3.2 billion people in 91 countries remaining at risk of the disease. Accurately distinguishing malaria from other diseases, especially uncomplicated malaria (UM) from non-malarial infections (nMI), remains a challenge. Furthermore, the success of rapid diagnostic tests (RDTs) is threatened by Pfhrp2/3 deletions and decreased sensitivity at low parasitaemia. Analysis of haematological indices can be used to support the identification of possible malaria cases for further diagnosis, especially in travellers returning from endemic areas. As a new application for precision medicine, we aimed to evaluate machine learning (ML) approaches that can accurately classify nMI, UM, and severe malaria (SM) using haematological parameters. Methods We obtained haematological data from 2,207 participants collected in Ghana: nMI ( n = 978), SM ( n = 526), and UM ( n = 703). Six different ML approaches were tested, to select the best approach. An artificial neural network (ANN) with three hidden layers was used for multi-classification of UM, SM, and uMI. Binary classifiers were developed to further identify the parameters that can distinguish UM or SM from nMI. Local interpretable model-agnostic explanations (LIME) were used to explain the binary classifiers. Results The multi-classification model had greater than 85% training and testing accuracy to distinguish clinical malaria from nMI. To distinguish UM from nMI, our approach identified platelet counts, red blood cell (RBC) counts, lymphocyte counts, and percentages as the top classifiers of UM with 0.801 test accuracy (AUC = 0.866 and F1 score = 0.747). To distinguish SM from nMI, the classifier had a test accuracy of 0.96 (AUC = 0.983 and F1 score = 0.944) with mean platelet volume and mean cell volume being the unique classifiers of SM. Random forest was used to confirm the classifications, and it showed that platelet and RBC counts were the major classifiers of UM, regardless of possible confounders such as patient age and sampling location. Conclusion The study provides proof of concept methods that classify UM and SM from nMI, showing that the ML approach is a feasible tool for clinical decision support. In the future, ML approaches could be incorporated into clinical decision-support algorithms for the diagnosis of acute febrile illness and monitoring response to acute SM treatment particularly in endemic settings." @default.
- W3109046922 created "2020-12-07" @default.
- W3109046922 creator A5009109819 @default.
- W3109046922 creator A5012004257 @default.
- W3109046922 creator A5020226366 @default.
- W3109046922 creator A5023901783 @default.
- W3109046922 creator A5026031023 @default.
- W3109046922 creator A5029353419 @default.
- W3109046922 creator A5054898046 @default.
- W3109046922 creator A5056230132 @default.
- W3109046922 creator A5065299718 @default.
- W3109046922 creator A5081054196 @default.
- W3109046922 creator A5084307982 @default.
- W3109046922 date "2020-11-30" @default.
- W3109046922 modified "2023-10-11" @default.
- W3109046922 title "Machine learning approaches classify clinical malaria outcomes based on haematological parameters" @default.
- W3109046922 cites W1970940629 @default.
- W3109046922 cites W1971417539 @default.
- W3109046922 cites W1978350920 @default.
- W3109046922 cites W1983520535 @default.
- W3109046922 cites W1987713777 @default.
- W3109046922 cites W2027729474 @default.
- W3109046922 cites W2060320811 @default.
- W3109046922 cites W2068716384 @default.
- W3109046922 cites W2076063813 @default.
- W3109046922 cites W2077580107 @default.
- W3109046922 cites W2087942791 @default.
- W3109046922 cites W2100685288 @default.
- W3109046922 cites W2101057650 @default.
- W3109046922 cites W2108952989 @default.
- W3109046922 cites W2151754909 @default.
- W3109046922 cites W2171602432 @default.
- W3109046922 cites W2515793158 @default.
- W3109046922 cites W2554140915 @default.
- W3109046922 cites W2594265828 @default.
- W3109046922 cites W2599187129 @default.
- W3109046922 cites W2737727646 @default.
- W3109046922 cites W2741016737 @default.
- W3109046922 cites W2766119845 @default.
- W3109046922 cites W2781122472 @default.
- W3109046922 cites W2783699776 @default.
- W3109046922 cites W2792570363 @default.
- W3109046922 cites W2798178310 @default.
- W3109046922 cites W2805310212 @default.
- W3109046922 cites W2884430236 @default.
- W3109046922 cites W2896734093 @default.
- W3109046922 cites W2919115771 @default.
- W3109046922 cites W2932322081 @default.
- W3109046922 cites W2935452404 @default.
- W3109046922 cites W2935871734 @default.
- W3109046922 cites W2966850727 @default.
- W3109046922 cites W2984499563 @default.
- W3109046922 cites W3124788457 @default.
- W3109046922 cites W3212119173 @default.
- W3109046922 cites W4211136995 @default.
- W3109046922 doi "https://doi.org/10.1186/s12916-020-01823-3" @default.
- W3109046922 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7702702" @default.
- W3109046922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33250058" @default.
- W3109046922 hasPublicationYear "2020" @default.
- W3109046922 type Work @default.
- W3109046922 sameAs 3109046922 @default.
- W3109046922 citedByCount "13" @default.
- W3109046922 countsByYear W31090469222021 @default.
- W3109046922 countsByYear W31090469222022 @default.
- W3109046922 countsByYear W31090469222023 @default.
- W3109046922 crossrefType "journal-article" @default.
- W3109046922 hasAuthorship W3109046922A5009109819 @default.
- W3109046922 hasAuthorship W3109046922A5012004257 @default.
- W3109046922 hasAuthorship W3109046922A5020226366 @default.
- W3109046922 hasAuthorship W3109046922A5023901783 @default.
- W3109046922 hasAuthorship W3109046922A5026031023 @default.
- W3109046922 hasAuthorship W3109046922A5029353419 @default.
- W3109046922 hasAuthorship W3109046922A5054898046 @default.
- W3109046922 hasAuthorship W3109046922A5056230132 @default.
- W3109046922 hasAuthorship W3109046922A5065299718 @default.
- W3109046922 hasAuthorship W3109046922A5081054196 @default.
- W3109046922 hasAuthorship W3109046922A5084307982 @default.
- W3109046922 hasBestOaLocation W31090469221 @default.
- W3109046922 hasConcept C119857082 @default.
- W3109046922 hasConcept C154945302 @default.
- W3109046922 hasConcept C203014093 @default.
- W3109046922 hasConcept C2778048844 @default.
- W3109046922 hasConcept C41008148 @default.
- W3109046922 hasConcept C50644808 @default.
- W3109046922 hasConcept C71924100 @default.
- W3109046922 hasConceptScore W3109046922C119857082 @default.
- W3109046922 hasConceptScore W3109046922C154945302 @default.
- W3109046922 hasConceptScore W3109046922C203014093 @default.
- W3109046922 hasConceptScore W3109046922C2778048844 @default.
- W3109046922 hasConceptScore W3109046922C41008148 @default.
- W3109046922 hasConceptScore W3109046922C50644808 @default.
- W3109046922 hasConceptScore W3109046922C71924100 @default.
- W3109046922 hasFunder F4320307874 @default.
- W3109046922 hasFunder F4320311904 @default.
- W3109046922 hasIssue "1" @default.
- W3109046922 hasLocation W31090469221 @default.
- W3109046922 hasLocation W31090469222 @default.
- W3109046922 hasLocation W31090469223 @default.
- W3109046922 hasLocation W31090469224 @default.
- W3109046922 hasLocation W31090469225 @default.