Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109049432> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3109049432 abstract "Graph convolutional neural networks have attracted increasing attention in recommendation system fields because of their ability to represent the interactive relations between users and items. At present, there are many session-based methods based on graph neural networks. For example, SR-GNN establishes a user’s session graph based on the user’s sequential behavior to predict the user’s next click. Although these session-based recommendation methods modeling the user’s interaction with items as a graph, these methods have achieved good performance in improving the accuracy of the recommendation. However, most existing models ignore the items’ relationship among sessions. To efficiently learn the deep connections between graph-structured items, we devised a dynamic attention-aware network (DYAGNN) to model the user’s potential behavior sequence for the recommendation. Extensive experiments have been conducted on two real-world datasets, the experimental results demonstrate that our method achieves good results in capturing user attention perception." @default.
- W3109049432 created "2020-12-07" @default.
- W3109049432 creator A5025592561 @default.
- W3109049432 creator A5026161142 @default.
- W3109049432 creator A5027459275 @default.
- W3109049432 date "2020-07-01" @default.
- W3109049432 modified "2023-09-26" @default.
- W3109049432 title "Dynamic Graph Attention-Aware Networks for Session-Based Recommendation" @default.
- W3109049432 cites W2171279286 @default.
- W3109049432 cites W2512965516 @default.
- W3109049432 cites W2699794116 @default.
- W3109049432 cites W2743289629 @default.
- W3109049432 cites W2782861800 @default.
- W3109049432 cites W2783272285 @default.
- W3109049432 cites W2798749466 @default.
- W3109049432 cites W2808489216 @default.
- W3109049432 cites W2903831494 @default.
- W3109049432 cites W2908404712 @default.
- W3109049432 cites W2914721378 @default.
- W3109049432 cites W2963091558 @default.
- W3109049432 cites W2963367478 @default.
- W3109049432 cites W2963743018 @default.
- W3109049432 cites W2964044287 @default.
- W3109049432 cites W2964296635 @default.
- W3109049432 cites W2964926209 @default.
- W3109049432 cites W2964938963 @default.
- W3109049432 cites W2965286893 @default.
- W3109049432 cites W2965397086 @default.
- W3109049432 cites W2965426524 @default.
- W3109049432 cites W2978500299 @default.
- W3109049432 cites W2987999026 @default.
- W3109049432 cites W3003393086 @default.
- W3109049432 cites W3004983566 @default.
- W3109049432 cites W3010148534 @default.
- W3109049432 cites W3100848837 @default.
- W3109049432 cites W3101707147 @default.
- W3109049432 doi "https://doi.org/10.1109/ijcnn48605.2020.9206914" @default.
- W3109049432 hasPublicationYear "2020" @default.
- W3109049432 type Work @default.
- W3109049432 sameAs 3109049432 @default.
- W3109049432 citedByCount "6" @default.
- W3109049432 countsByYear W31090494322021 @default.
- W3109049432 countsByYear W31090494322022 @default.
- W3109049432 countsByYear W31090494322023 @default.
- W3109049432 crossrefType "proceedings-article" @default.
- W3109049432 hasAuthorship W3109049432A5025592561 @default.
- W3109049432 hasAuthorship W3109049432A5026161142 @default.
- W3109049432 hasAuthorship W3109049432A5027459275 @default.
- W3109049432 hasConcept C107457646 @default.
- W3109049432 hasConcept C119857082 @default.
- W3109049432 hasConcept C132525143 @default.
- W3109049432 hasConcept C136764020 @default.
- W3109049432 hasConcept C154945302 @default.
- W3109049432 hasConcept C23123220 @default.
- W3109049432 hasConcept C2779182362 @default.
- W3109049432 hasConcept C2993807640 @default.
- W3109049432 hasConcept C41008148 @default.
- W3109049432 hasConcept C557471498 @default.
- W3109049432 hasConcept C80444323 @default.
- W3109049432 hasConcept C81363708 @default.
- W3109049432 hasConceptScore W3109049432C107457646 @default.
- W3109049432 hasConceptScore W3109049432C119857082 @default.
- W3109049432 hasConceptScore W3109049432C132525143 @default.
- W3109049432 hasConceptScore W3109049432C136764020 @default.
- W3109049432 hasConceptScore W3109049432C154945302 @default.
- W3109049432 hasConceptScore W3109049432C23123220 @default.
- W3109049432 hasConceptScore W3109049432C2779182362 @default.
- W3109049432 hasConceptScore W3109049432C2993807640 @default.
- W3109049432 hasConceptScore W3109049432C41008148 @default.
- W3109049432 hasConceptScore W3109049432C557471498 @default.
- W3109049432 hasConceptScore W3109049432C80444323 @default.
- W3109049432 hasConceptScore W3109049432C81363708 @default.
- W3109049432 hasLocation W31090494321 @default.
- W3109049432 hasOpenAccess W3109049432 @default.
- W3109049432 hasPrimaryLocation W31090494321 @default.
- W3109049432 hasRelatedWork W2002418671 @default.
- W3109049432 hasRelatedWork W2809363009 @default.
- W3109049432 hasRelatedWork W2968745142 @default.
- W3109049432 hasRelatedWork W3021430260 @default.
- W3109049432 hasRelatedWork W3027997911 @default.
- W3109049432 hasRelatedWork W4226345073 @default.
- W3109049432 hasRelatedWork W4287776258 @default.
- W3109049432 hasRelatedWork W4307100037 @default.
- W3109049432 hasRelatedWork W4307640250 @default.
- W3109049432 hasRelatedWork W4384470981 @default.
- W3109049432 isParatext "false" @default.
- W3109049432 isRetracted "false" @default.
- W3109049432 magId "3109049432" @default.
- W3109049432 workType "article" @default.