Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109131840> ?p ?o ?g. }
- W3109131840 endingPage "437" @default.
- W3109131840 startingPage "389" @default.
- W3109131840 abstract "Pharmaceutical companies, upstream suppliers, associated logistics providers, health workers, regulatory agencies, public health experts and ultimately the medical practitioners and general public have been navigating an increasingly globalized vaccine supply chainVaccine supply chain; any disruption to the supply chain may cause cascading failure and have devastating consequences. The COVID-19 pandemic has already highlighted the lack of resilience in supply chains, as global networks fail from disruptions at single nodes and connections. As the race for a COVID-19 vaccine continues, the importance of not only an efficient supply chain but a resilient vaccine supply chainVaccine supply chain capable of reliable production and reaching target populations despite likely but currently unknown disruptions is imperative. Proactively applying resilience analytics to vaccine supply chainVaccine supply chain models will increase the probability that vaccination programs meet their goals. Without such a network in place for manufacture and distribution of the COVID-19 vaccine, even the most efficacious and safe vaccine will not prove viable. Through an overview of the existing vaccine and pharmaceutical supply chainPharmaceutical supply chain publications focusing on resilience, as well as recent papers reporting modeling of resilience in supply chains across multiple fields, we find that models for supply chain resilienceSupply chain resilience are few and most of them are focused on individual dimensions of resilience rather than on comprehensive strategy necessary for scaling up vaccine production and distribution in emergency settings. We find that COVID-19 resulted in a wave of interest to supply chain resilienceSupply chain resilience, but publications from 2020 are narrow in focus and largely qualitative in nature; evidence-based models and measures are rare. Further, publications often focus exclusively on specific portions of the specific supply chain of interest, excluding associated supporting networks, such as transportation, social and command and control (C2) necessary for vaccine production and equitable distribution. This lack of network analysis is a major gap in the literature that needs to be bridged in order to create methods of real-time analysis and decision tools for the COVID-19 vaccine supply chainVaccine supply chain. We conclude that a comprehensive, quantitative approach to network resilience that encompasses the supply chain in the context of other social and physical networks is needed in order to address the emerging challenges of a large-scale COVID-19 vaccination program. We further find that the COVID-19 pandemic underscores the necessity of positioning supply chain resilienceSupply chain resilience within a multi-network context and formally incorporating temporal dimensions into analysis through the NAS definition of resilience—plan, absorb, recover, adapt—to ensure essential needs are met across all dimensions of society. Modeling and analyzing vaccine supply chainVaccine supply chain resilienceVaccine supply chain resilience ensures that value is maintained should disruptions occur." @default.
- W3109131840 created "2020-12-07" @default.
- W3109131840 creator A5008768979 @default.
- W3109131840 creator A5010992269 @default.
- W3109131840 creator A5066135816 @default.
- W3109131840 creator A5067302822 @default.
- W3109131840 date "2021-01-01" @default.
- W3109131840 modified "2023-09-26" @default.
- W3109131840 title "The Vaccine Supply Chain: A Call for Resilience Analytics to Support COVID-19 Vaccine Production and Distribution" @default.
- W3109131840 cites W1498954468 @default.
- W3109131840 cites W1558241182 @default.
- W3109131840 cites W1963498445 @default.
- W3109131840 cites W1963823006 @default.
- W3109131840 cites W1977488456 @default.
- W3109131840 cites W1990921963 @default.
- W3109131840 cites W1991948153 @default.
- W3109131840 cites W1993043346 @default.
- W3109131840 cites W1998351919 @default.
- W3109131840 cites W2003126535 @default.
- W3109131840 cites W2008047953 @default.
- W3109131840 cites W2017775535 @default.
- W3109131840 cites W2023400892 @default.
- W3109131840 cites W2036188801 @default.
- W3109131840 cites W2040065701 @default.
- W3109131840 cites W2068874944 @default.
- W3109131840 cites W2069165829 @default.
- W3109131840 cites W2075552387 @default.
- W3109131840 cites W2090234039 @default.
- W3109131840 cites W2139250680 @default.
- W3109131840 cites W2143097764 @default.
- W3109131840 cites W2150983131 @default.
- W3109131840 cites W2166157172 @default.
- W3109131840 cites W2239748356 @default.
- W3109131840 cites W2498807025 @default.
- W3109131840 cites W2602689860 @default.
- W3109131840 cites W2603830777 @default.
- W3109131840 cites W2606491501 @default.
- W3109131840 cites W2652705574 @default.
- W3109131840 cites W2707121489 @default.
- W3109131840 cites W2790017973 @default.
- W3109131840 cites W2800116659 @default.
- W3109131840 cites W2888623634 @default.
- W3109131840 cites W2888672592 @default.
- W3109131840 cites W2889119970 @default.
- W3109131840 cites W2898178897 @default.
- W3109131840 cites W2905066720 @default.
- W3109131840 cites W2945976020 @default.
- W3109131840 cites W2947788863 @default.
- W3109131840 cites W2979003187 @default.
- W3109131840 cites W3013474995 @default.
- W3109131840 cites W3015960835 @default.
- W3109131840 cites W3016428958 @default.
- W3109131840 cites W3023230016 @default.
- W3109131840 cites W3026226282 @default.
- W3109131840 cites W3026347338 @default.
- W3109131840 cites W3027634395 @default.
- W3109131840 cites W3030040810 @default.
- W3109131840 cites W3032443639 @default.
- W3109131840 cites W3033114932 @default.
- W3109131840 cites W3033639166 @default.
- W3109131840 cites W3033700879 @default.
- W3109131840 cites W3034439562 @default.
- W3109131840 cites W3035993398 @default.
- W3109131840 cites W3036303374 @default.
- W3109131840 cites W3036408995 @default.
- W3109131840 cites W3037014480 @default.
- W3109131840 cites W3042833857 @default.
- W3109131840 cites W3043722389 @default.
- W3109131840 cites W3044336785 @default.
- W3109131840 cites W3048780683 @default.
- W3109131840 cites W3081892744 @default.
- W3109131840 cites W3087865356 @default.
- W3109131840 cites W3088726689 @default.
- W3109131840 cites W3088965854 @default.
- W3109131840 cites W3090844627 @default.
- W3109131840 cites W3092104512 @default.
- W3109131840 cites W3092502556 @default.
- W3109131840 cites W3122679341 @default.
- W3109131840 cites W3136305297 @default.
- W3109131840 cites W3150875848 @default.
- W3109131840 cites W4210365593 @default.
- W3109131840 cites W4245825923 @default.
- W3109131840 cites W66439614 @default.
- W3109131840 doi "https://doi.org/10.1007/978-3-030-71587-8_22" @default.
- W3109131840 hasPublicationYear "2021" @default.
- W3109131840 type Work @default.
- W3109131840 sameAs 3109131840 @default.
- W3109131840 citedByCount "17" @default.
- W3109131840 countsByYear W31091318402012 @default.
- W3109131840 countsByYear W31091318402021 @default.
- W3109131840 countsByYear W31091318402022 @default.
- W3109131840 countsByYear W31091318402023 @default.
- W3109131840 crossrefType "book-chapter" @default.
- W3109131840 hasAuthorship W3109131840A5008768979 @default.
- W3109131840 hasAuthorship W3109131840A5010992269 @default.
- W3109131840 hasAuthorship W3109131840A5066135816 @default.
- W3109131840 hasAuthorship W3109131840A5067302822 @default.
- W3109131840 hasBestOaLocation W31091318402 @default.