Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109164893> ?p ?o ?g. }
- W3109164893 endingPage "18" @default.
- W3109164893 startingPage "1" @default.
- W3109164893 abstract "Accurate and rapid defect identification based on pulsed eddy current testing (PECT) plays an important role in the structural integrity and health monitoring (SIHM) of in-service equipment in the renewable energy system. However, in conventional data-driven defect identification methods, the signal feature extraction is time consuming and requires expert experience. To avoid the difficulty of manual feature extraction and overcome the shortcomings of the classic deep convolutional network (DCNN), such as large memory and high computational cost, an intelligent defect recognition pipeline based on the general Warblet transform (GWT) method and optimized two-dimensional (2-D) DCNN is proposed. The GWT method is used to convert the one-dimensional (1-D) PECT signal to a 2D grayscale image used as the input of 2D DCNN. A compound method is proposed to optimize the baseline VGG16, a well-known DCNN, from four aspects including reducing the input size, adding batch normalization layer (BN) after every convolutional layer(Conv) and fully connection layer (FC), simplifying the FCs, and removing unimportant filters in Convs so as to reduce memory and computational costs while improving accuracy. Through a pulsed eddy current testing (PECT) experiment considering interference factors including liftoff and noise, the following conclusion can be obtained. The time-frequency representation (TFR) obtained by the GWT method not only has excellent ability in terms of the transient component analysis but also is less affected by the reduction of image size; the proposed optimized DCNN can accurately identify defect types without manual feature extraction. And compared to the baseline VGG16, the accuracy obtained by the optimized DCNN is improved by 7%, to about 99.58%, and the memory and computational cost are reduced by 98%. Moreover, compared with other well-known DCNNs, such as GoogLeNet, Inception V3, ResNet50, and AlexNet, the optimized network has significant advantages in terms of accuracy and computational cost, too." @default.
- W3109164893 created "2020-12-07" @default.
- W3109164893 creator A5022594923 @default.
- W3109164893 creator A5026302018 @default.
- W3109164893 creator A5032642797 @default.
- W3109164893 creator A5033777282 @default.
- W3109164893 creator A5040101205 @default.
- W3109164893 creator A5064213921 @default.
- W3109164893 creator A5069953599 @default.
- W3109164893 date "2020-11-23" @default.
- W3109164893 modified "2023-10-17" @default.
- W3109164893 title "Intelligent Defect Identification Based on PECT Signals and an Optimized Two-Dimensional Deep Convolutional Network" @default.
- W3109164893 cites W1567125108 @default.
- W3109164893 cites W1982500096 @default.
- W3109164893 cites W1990422817 @default.
- W3109164893 cites W1993705000 @default.
- W3109164893 cites W1995875735 @default.
- W3109164893 cites W2048294684 @default.
- W3109164893 cites W2051901894 @default.
- W3109164893 cites W2073464062 @default.
- W3109164893 cites W2206862670 @default.
- W3109164893 cites W2259438584 @default.
- W3109164893 cites W2412479940 @default.
- W3109164893 cites W2561546628 @default.
- W3109164893 cites W2566735788 @default.
- W3109164893 cites W2616799910 @default.
- W3109164893 cites W2792424903 @default.
- W3109164893 cites W2891375437 @default.
- W3109164893 cites W2895543448 @default.
- W3109164893 cites W2895594817 @default.
- W3109164893 cites W2901925621 @default.
- W3109164893 cites W2911725274 @default.
- W3109164893 cites W2912803327 @default.
- W3109164893 cites W2920311927 @default.
- W3109164893 cites W2942973938 @default.
- W3109164893 cites W2947354205 @default.
- W3109164893 cites W2973084186 @default.
- W3109164893 cites W2977092505 @default.
- W3109164893 cites W2984852017 @default.
- W3109164893 cites W2987539388 @default.
- W3109164893 cites W3008819860 @default.
- W3109164893 cites W3010421437 @default.
- W3109164893 cites W3012264837 @default.
- W3109164893 cites W52836921 @default.
- W3109164893 doi "https://doi.org/10.1155/2020/9518945" @default.
- W3109164893 hasPublicationYear "2020" @default.
- W3109164893 type Work @default.
- W3109164893 sameAs 3109164893 @default.
- W3109164893 citedByCount "1" @default.
- W3109164893 countsByYear W31091648932022 @default.
- W3109164893 crossrefType "journal-article" @default.
- W3109164893 hasAuthorship W3109164893A5022594923 @default.
- W3109164893 hasAuthorship W3109164893A5026302018 @default.
- W3109164893 hasAuthorship W3109164893A5032642797 @default.
- W3109164893 hasAuthorship W3109164893A5033777282 @default.
- W3109164893 hasAuthorship W3109164893A5040101205 @default.
- W3109164893 hasAuthorship W3109164893A5064213921 @default.
- W3109164893 hasAuthorship W3109164893A5069953599 @default.
- W3109164893 hasBestOaLocation W31091648931 @default.
- W3109164893 hasConcept C136886441 @default.
- W3109164893 hasConcept C138885662 @default.
- W3109164893 hasConcept C144024400 @default.
- W3109164893 hasConcept C153180895 @default.
- W3109164893 hasConcept C154945302 @default.
- W3109164893 hasConcept C19165224 @default.
- W3109164893 hasConcept C2776401178 @default.
- W3109164893 hasConcept C41008148 @default.
- W3109164893 hasConcept C41895202 @default.
- W3109164893 hasConcept C52622490 @default.
- W3109164893 hasConcept C81363708 @default.
- W3109164893 hasConceptScore W3109164893C136886441 @default.
- W3109164893 hasConceptScore W3109164893C138885662 @default.
- W3109164893 hasConceptScore W3109164893C144024400 @default.
- W3109164893 hasConceptScore W3109164893C153180895 @default.
- W3109164893 hasConceptScore W3109164893C154945302 @default.
- W3109164893 hasConceptScore W3109164893C19165224 @default.
- W3109164893 hasConceptScore W3109164893C2776401178 @default.
- W3109164893 hasConceptScore W3109164893C41008148 @default.
- W3109164893 hasConceptScore W3109164893C41895202 @default.
- W3109164893 hasConceptScore W3109164893C52622490 @default.
- W3109164893 hasConceptScore W3109164893C81363708 @default.
- W3109164893 hasFunder F4320325626 @default.
- W3109164893 hasLocation W31091648931 @default.
- W3109164893 hasOpenAccess W3109164893 @default.
- W3109164893 hasPrimaryLocation W31091648931 @default.
- W3109164893 hasRelatedWork W2059299633 @default.
- W3109164893 hasRelatedWork W2132729794 @default.
- W3109164893 hasRelatedWork W2588076546 @default.
- W3109164893 hasRelatedWork W2732542196 @default.
- W3109164893 hasRelatedWork W2760085659 @default.
- W3109164893 hasRelatedWork W2969680539 @default.
- W3109164893 hasRelatedWork W2977314777 @default.
- W3109164893 hasRelatedWork W2995914718 @default.
- W3109164893 hasRelatedWork W3081496756 @default.
- W3109164893 hasRelatedWork W3156786002 @default.
- W3109164893 hasVolume "2020" @default.
- W3109164893 isParatext "false" @default.
- W3109164893 isRetracted "false" @default.