Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109188416> ?p ?o ?g. }
- W3109188416 endingPage "1103" @default.
- W3109188416 startingPage "1093" @default.
- W3109188416 abstract "Aim: To analyse unmanned aerial vehicle (UAV)-based imagery to assess canopy structural changes after the application of different canopy management practices in the vineyard.Methods and results: Four different canopy management practices: i–ii) leaf removal within the bunch zone (eastern side/both eastern and western sides), iii) bunch thinning and iv) shoot trimming were applied to grapevines at veraison, in a commercial Cabernet-Sauvignon vineyard in McLaren Vale, South Australia. UAV-based imagery captures were taken: i) before the canopy treatments, ii) after the treatments and iii) at harvest to assess the treatment outcomes. Canopy volume, projected canopy area and normalized difference vegetation index (NDVI) were derived from the analysis of RGB and multispectral imagery collected using the UAV. Plant area index (PAI) was calculated using the smartphone app VitiCanopy as a ground-based measurement for comparison with UAV-derived measurements. Results showed that all three types of UAV-based measurements detected changes in the canopy structure after the application of canopy management practices, except for the bunch thinning treatment. As expected, ground-based PAI was the only technique to effectively detect internal canopy structure changes caused by bunch thinning. Canopy volume and PAI were found to better detect variations in canopy structure compared to NDVI and projected canopy area. The latter were negatively affected by the interference of the trimmed shoots left on the ground.Conclusions: UAV-based tools can provide accurate assessments to some canopy management outcomes at the vineyard scale. Among different UAV-based measurements, canopy volume was more sensitive to changes in canopy structure, compared to NDVI and projected canopy area, and demonstrated a greater potential to assess the outcomes of a range of canopy management practices. Significance and impact of the study: Canopy management practices are widely applied to regulate canopy growth, improve grape quality and reduce disease pressure in the bunch zone. Being able to detect major changes in canopy structure, with some limitations when the practice affects the internal structure (i.e., bunch thinning), UAV-based imagery analysis can be used to measure the outcome of common canopy management practices and it can improve the efficiency of vineyard management." @default.
- W3109188416 created "2020-12-07" @default.
- W3109188416 creator A5031627534 @default.
- W3109188416 creator A5067362866 @default.
- W3109188416 creator A5077912187 @default.
- W3109188416 creator A5085483050 @default.
- W3109188416 date "2020-11-23" @default.
- W3109188416 modified "2023-09-30" @default.
- W3109188416 title "UAV and ground-based imagery analysis detects canopy structure changes after canopy management applications" @default.
- W3109188416 cites W1511208807 @default.
- W3109188416 cites W1518917059 @default.
- W3109188416 cites W1563235849 @default.
- W3109188416 cites W1651867127 @default.
- W3109188416 cites W1967248741 @default.
- W3109188416 cites W1968314959 @default.
- W3109188416 cites W1971874701 @default.
- W3109188416 cites W2020084568 @default.
- W3109188416 cites W2037304439 @default.
- W3109188416 cites W2038617433 @default.
- W3109188416 cites W2073956583 @default.
- W3109188416 cites W2103202119 @default.
- W3109188416 cites W2115917750 @default.
- W3109188416 cites W2116635928 @default.
- W3109188416 cites W2119889520 @default.
- W3109188416 cites W2129223668 @default.
- W3109188416 cites W2155460607 @default.
- W3109188416 cites W2337536913 @default.
- W3109188416 cites W2517329855 @default.
- W3109188416 cites W2518759102 @default.
- W3109188416 cites W2562162680 @default.
- W3109188416 cites W2566624600 @default.
- W3109188416 cites W2582348499 @default.
- W3109188416 cites W2604559464 @default.
- W3109188416 cites W2617056706 @default.
- W3109188416 cites W2788451552 @default.
- W3109188416 cites W2790861445 @default.
- W3109188416 cites W2796660597 @default.
- W3109188416 cites W2810492679 @default.
- W3109188416 cites W2884040439 @default.
- W3109188416 cites W2889610963 @default.
- W3109188416 cites W2895873012 @default.
- W3109188416 cites W2903063870 @default.
- W3109188416 cites W2906082851 @default.
- W3109188416 cites W2910669015 @default.
- W3109188416 cites W2916442355 @default.
- W3109188416 cites W2948619756 @default.
- W3109188416 cites W2953864672 @default.
- W3109188416 cites W2960334918 @default.
- W3109188416 doi "https://doi.org/10.20870/oeno-one.2020.54.4.3647" @default.
- W3109188416 hasPublicationYear "2020" @default.
- W3109188416 type Work @default.
- W3109188416 sameAs 3109188416 @default.
- W3109188416 citedByCount "7" @default.
- W3109188416 countsByYear W31091884162021 @default.
- W3109188416 countsByYear W31091884162022 @default.
- W3109188416 countsByYear W31091884162023 @default.
- W3109188416 crossrefType "journal-article" @default.
- W3109188416 hasAuthorship W3109188416A5031627534 @default.
- W3109188416 hasAuthorship W3109188416A5067362866 @default.
- W3109188416 hasAuthorship W3109188416A5077912187 @default.
- W3109188416 hasAuthorship W3109188416A5085483050 @default.
- W3109188416 hasBestOaLocation W31091884161 @default.
- W3109188416 hasConcept C101000010 @default.
- W3109188416 hasConcept C139669111 @default.
- W3109188416 hasConcept C166957645 @default.
- W3109188416 hasConcept C18903297 @default.
- W3109188416 hasConcept C205649164 @default.
- W3109188416 hasConcept C25989453 @default.
- W3109188416 hasConcept C2780924976 @default.
- W3109188416 hasConcept C2781353100 @default.
- W3109188416 hasConcept C39432304 @default.
- W3109188416 hasConcept C39807119 @default.
- W3109188416 hasConcept C62649853 @default.
- W3109188416 hasConcept C6557445 @default.
- W3109188416 hasConcept C86803240 @default.
- W3109188416 hasConcept C97137747 @default.
- W3109188416 hasConceptScore W3109188416C101000010 @default.
- W3109188416 hasConceptScore W3109188416C139669111 @default.
- W3109188416 hasConceptScore W3109188416C166957645 @default.
- W3109188416 hasConceptScore W3109188416C18903297 @default.
- W3109188416 hasConceptScore W3109188416C205649164 @default.
- W3109188416 hasConceptScore W3109188416C25989453 @default.
- W3109188416 hasConceptScore W3109188416C2780924976 @default.
- W3109188416 hasConceptScore W3109188416C2781353100 @default.
- W3109188416 hasConceptScore W3109188416C39432304 @default.
- W3109188416 hasConceptScore W3109188416C39807119 @default.
- W3109188416 hasConceptScore W3109188416C62649853 @default.
- W3109188416 hasConceptScore W3109188416C6557445 @default.
- W3109188416 hasConceptScore W3109188416C86803240 @default.
- W3109188416 hasConceptScore W3109188416C97137747 @default.
- W3109188416 hasIssue "4" @default.
- W3109188416 hasLocation W31091884161 @default.
- W3109188416 hasOpenAccess W3109188416 @default.
- W3109188416 hasPrimaryLocation W31091884161 @default.
- W3109188416 hasRelatedWork W1975762360 @default.
- W3109188416 hasRelatedWork W1976767671 @default.
- W3109188416 hasRelatedWork W1986010464 @default.
- W3109188416 hasRelatedWork W1998002922 @default.