Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109271037> ?p ?o ?g. }
- W3109271037 endingPage "714" @default.
- W3109271037 startingPage "697" @default.
- W3109271037 abstract "Continuous sign language recognition (SLR) is a challenging task that requires learning on both spatial and temporal dimensions of signing frame sequences. Most recent work accomplishes this by using CNN and RNN hybrid networks. However, training these networks is generally non-trivial, and most of them fail in learning unseen sequence patterns, causing an unsatisfactory performance for online recognition. In this paper, we propose a fully convolutional network (FCN) for online SLR to concurrently learn spatial and temporal features from weakly annotated video sequences with only sentence-level annotations given. A gloss feature enhancement (GFE) module is introduced in the proposed network to enforce better sequence alignment learning. The proposed network is end-to-end trainable without any pre-training. We conduct experiments on two large scale SLR datasets. Experiments show that our method for continuous SLR is effective and performs well in online recognition." @default.
- W3109271037 created "2020-12-07" @default.
- W3109271037 creator A5001987788 @default.
- W3109271037 creator A5050420653 @default.
- W3109271037 creator A5058792328 @default.
- W3109271037 creator A5073658011 @default.
- W3109271037 date "2020-01-01" @default.
- W3109271037 modified "2023-10-16" @default.
- W3109271037 title "Fully Convolutional Networks for Continuous Sign Language Recognition" @default.
- W3109271037 cites W1485582184 @default.
- W3109271037 cites W1533416326 @default.
- W3109271037 cites W1573040851 @default.
- W3109271037 cites W1586939924 @default.
- W3109271037 cites W1651836687 @default.
- W3109271037 cites W1903029394 @default.
- W3109271037 cites W1972692077 @default.
- W3109271037 cites W2015551990 @default.
- W3109271037 cites W2043356651 @default.
- W3109271037 cites W2091808376 @default.
- W3109271037 cites W2095687464 @default.
- W3109271037 cites W2102804873 @default.
- W3109271037 cites W2112382942 @default.
- W3109271037 cites W2127141656 @default.
- W3109271037 cites W2127334685 @default.
- W3109271037 cites W2129233554 @default.
- W3109271037 cites W2134336275 @default.
- W3109271037 cites W2139501017 @default.
- W3109271037 cites W2188882108 @default.
- W3109271037 cites W2317824680 @default.
- W3109271037 cites W2341398492 @default.
- W3109271037 cites W2463640844 @default.
- W3109271037 cites W2471695703 @default.
- W3109271037 cites W2515446175 @default.
- W3109271037 cites W2516844836 @default.
- W3109271037 cites W2587277634 @default.
- W3109271037 cites W2746301562 @default.
- W3109271037 cites W2755802490 @default.
- W3109271037 cites W2759302818 @default.
- W3109271037 cites W2786974559 @default.
- W3109271037 cites W2788334925 @default.
- W3109271037 cites W2799020610 @default.
- W3109271037 cites W2807840688 @default.
- W3109271037 cites W2908497602 @default.
- W3109271037 cites W2948139159 @default.
- W3109271037 cites W2962681491 @default.
- W3109271037 cites W2963211739 @default.
- W3109271037 cites W2964241990 @default.
- W3109271037 cites W2964253156 @default.
- W3109271037 cites W2997931247 @default.
- W3109271037 cites W4211252605 @default.
- W3109271037 doi "https://doi.org/10.1007/978-3-030-58586-0_41" @default.
- W3109271037 hasPublicationYear "2020" @default.
- W3109271037 type Work @default.
- W3109271037 sameAs 3109271037 @default.
- W3109271037 citedByCount "39" @default.
- W3109271037 countsByYear W31092710372020 @default.
- W3109271037 countsByYear W31092710372021 @default.
- W3109271037 countsByYear W31092710372022 @default.
- W3109271037 countsByYear W31092710372023 @default.
- W3109271037 crossrefType "book-chapter" @default.
- W3109271037 hasAuthorship W3109271037A5001987788 @default.
- W3109271037 hasAuthorship W3109271037A5050420653 @default.
- W3109271037 hasAuthorship W3109271037A5058792328 @default.
- W3109271037 hasAuthorship W3109271037A5073658011 @default.
- W3109271037 hasBestOaLocation W31092710372 @default.
- W3109271037 hasConcept C108583219 @default.
- W3109271037 hasConcept C126042441 @default.
- W3109271037 hasConcept C138885662 @default.
- W3109271037 hasConcept C153180895 @default.
- W3109271037 hasConcept C154945302 @default.
- W3109271037 hasConcept C2777530160 @default.
- W3109271037 hasConcept C2778112365 @default.
- W3109271037 hasConcept C28490314 @default.
- W3109271037 hasConcept C41008148 @default.
- W3109271037 hasConcept C41895202 @default.
- W3109271037 hasConcept C522192633 @default.
- W3109271037 hasConcept C54355233 @default.
- W3109271037 hasConcept C76155785 @default.
- W3109271037 hasConcept C81363708 @default.
- W3109271037 hasConcept C86803240 @default.
- W3109271037 hasConceptScore W3109271037C108583219 @default.
- W3109271037 hasConceptScore W3109271037C126042441 @default.
- W3109271037 hasConceptScore W3109271037C138885662 @default.
- W3109271037 hasConceptScore W3109271037C153180895 @default.
- W3109271037 hasConceptScore W3109271037C154945302 @default.
- W3109271037 hasConceptScore W3109271037C2777530160 @default.
- W3109271037 hasConceptScore W3109271037C2778112365 @default.
- W3109271037 hasConceptScore W3109271037C28490314 @default.
- W3109271037 hasConceptScore W3109271037C41008148 @default.
- W3109271037 hasConceptScore W3109271037C41895202 @default.
- W3109271037 hasConceptScore W3109271037C522192633 @default.
- W3109271037 hasConceptScore W3109271037C54355233 @default.
- W3109271037 hasConceptScore W3109271037C76155785 @default.
- W3109271037 hasConceptScore W3109271037C81363708 @default.
- W3109271037 hasConceptScore W3109271037C86803240 @default.
- W3109271037 hasLocation W31092710371 @default.
- W3109271037 hasLocation W31092710372 @default.
- W3109271037 hasLocation W31092710373 @default.