Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109304495> ?p ?o ?g. }
- W3109304495 endingPage "68" @default.
- W3109304495 startingPage "49" @default.
- W3109304495 abstract "Data analytics and its associated applications have recently become impor-tant fields of study. The subject of concern for researchers now-a-days is a massive amount of data produced every minute and second as people con-stantly sharing thoughts, opinions about things that are associated with them. Social media info, however, is still unstructured, disseminated and hard to handle and need to be developed a strong foundation so that they can be utilized as valuable information on a particular topic. Processing such unstructured data in this area in terms of noise, co-relevance, emoticons, folksonomies and slangs is really quite challenging and therefore requires proper data pre-processing before getting the right sentiments. The dataset is extracted from Kaggle and Twitter, pre-processing performed using NLTK and Scikit-learn and features selection and extraction is done for Bag of Words (BOW), Term Frequency (TF) and Inverse Document Frequency (IDF) scheme. 
 For polarity identification, we evaluated five different Machine Learning (ML) algorithms viz Multinomial Naive Bayes (MNB), Logistic Regression (LR), Decision Trees (DT), XGBoost (XGB) and Support Vector Machines (SVM). We have performed a comparative analysis of the success for these algorithms in order to decide which algorithm works best for the given data-set in terms of recall, accuracy, F1-score and precision. We assess the effects of various pre-processing techniques on two datasets; one with domain and other not. It is demonstrated that SVM classifier outperformed the other classifiers with superior evaluations of 73.12% and 94.91% for accuracy and precision respectively. It is also highlighted in this research that the selection and representation of features along with various pre-processing techniques have a positive impact on the performance of the classification. The ultimate outcome indicates an improvement in sentiment classification and we noted that pre-processing approaches obviously suggest an improvement in the efficiency of the classifiers." @default.
- W3109304495 created "2020-12-07" @default.
- W3109304495 creator A5041597046 @default.
- W3109304495 creator A5059680927 @default.
- W3109304495 date "2020-06-18" @default.
- W3109304495 modified "2023-10-18" @default.
- W3109304495 title "Influence of Pre-Processing Strategies on the Performance of ML Classifiers Exploiting TF-IDF and BOW Features" @default.
- W3109304495 cites W15334911 @default.
- W3109304495 cites W2085066781 @default.
- W3109304495 cites W2097726431 @default.
- W3109304495 cites W2512317583 @default.
- W3109304495 cites W2561533860 @default.
- W3109304495 cites W2562617836 @default.
- W3109304495 cites W2572533397 @default.
- W3109304495 cites W2584056073 @default.
- W3109304495 cites W2616720367 @default.
- W3109304495 cites W2753546666 @default.
- W3109304495 cites W2771135506 @default.
- W3109304495 cites W2782127670 @default.
- W3109304495 cites W2792682186 @default.
- W3109304495 cites W2792883466 @default.
- W3109304495 cites W2885472645 @default.
- W3109304495 cites W2886754556 @default.
- W3109304495 cites W2894747149 @default.
- W3109304495 cites W2898879730 @default.
- W3109304495 cites W2903926290 @default.
- W3109304495 cites W2905234665 @default.
- W3109304495 cites W2922694903 @default.
- W3109304495 cites W2929752017 @default.
- W3109304495 cites W2935921205 @default.
- W3109304495 cites W2948420213 @default.
- W3109304495 cites W2950069904 @default.
- W3109304495 cites W2969322340 @default.
- W3109304495 cites W2974836096 @default.
- W3109304495 cites W2975262101 @default.
- W3109304495 cites W2982216702 @default.
- W3109304495 cites W2982710923 @default.
- W3109304495 cites W2993259699 @default.
- W3109304495 cites W2994443510 @default.
- W3109304495 cites W2997581695 @default.
- W3109304495 cites W3021743785 @default.
- W3109304495 cites W3025138423 @default.
- W3109304495 doi "https://doi.org/10.14201/adcaij2020924968" @default.
- W3109304495 hasPublicationYear "2020" @default.
- W3109304495 type Work @default.
- W3109304495 sameAs 3109304495 @default.
- W3109304495 citedByCount "22" @default.
- W3109304495 countsByYear W31093044952020 @default.
- W3109304495 countsByYear W31093044952021 @default.
- W3109304495 countsByYear W31093044952022 @default.
- W3109304495 countsByYear W31093044952023 @default.
- W3109304495 crossrefType "journal-article" @default.
- W3109304495 hasAuthorship W3109304495A5041597046 @default.
- W3109304495 hasAuthorship W3109304495A5059680927 @default.
- W3109304495 hasBestOaLocation W31093044951 @default.
- W3109304495 hasConcept C119857082 @default.
- W3109304495 hasConcept C121332964 @default.
- W3109304495 hasConcept C12267149 @default.
- W3109304495 hasConcept C124101348 @default.
- W3109304495 hasConcept C154945302 @default.
- W3109304495 hasConcept C169258074 @default.
- W3109304495 hasConcept C41008148 @default.
- W3109304495 hasConcept C52001869 @default.
- W3109304495 hasConcept C61797465 @default.
- W3109304495 hasConcept C62520636 @default.
- W3109304495 hasConcept C81758059 @default.
- W3109304495 hasConcept C95623464 @default.
- W3109304495 hasConceptScore W3109304495C119857082 @default.
- W3109304495 hasConceptScore W3109304495C121332964 @default.
- W3109304495 hasConceptScore W3109304495C12267149 @default.
- W3109304495 hasConceptScore W3109304495C124101348 @default.
- W3109304495 hasConceptScore W3109304495C154945302 @default.
- W3109304495 hasConceptScore W3109304495C169258074 @default.
- W3109304495 hasConceptScore W3109304495C41008148 @default.
- W3109304495 hasConceptScore W3109304495C52001869 @default.
- W3109304495 hasConceptScore W3109304495C61797465 @default.
- W3109304495 hasConceptScore W3109304495C62520636 @default.
- W3109304495 hasConceptScore W3109304495C81758059 @default.
- W3109304495 hasConceptScore W3109304495C95623464 @default.
- W3109304495 hasIssue "2" @default.
- W3109304495 hasLocation W31093044951 @default.
- W3109304495 hasLocation W31093044952 @default.
- W3109304495 hasLocation W31093044953 @default.
- W3109304495 hasOpenAccess W3109304495 @default.
- W3109304495 hasPrimaryLocation W31093044951 @default.
- W3109304495 hasRelatedWork W2595988085 @default.
- W3109304495 hasRelatedWork W2979979539 @default.
- W3109304495 hasRelatedWork W2985924212 @default.
- W3109304495 hasRelatedWork W3127425528 @default.
- W3109304495 hasRelatedWork W3143658565 @default.
- W3109304495 hasRelatedWork W3168994312 @default.
- W3109304495 hasRelatedWork W3204641204 @default.
- W3109304495 hasRelatedWork W4283016678 @default.
- W3109304495 hasRelatedWork W4311106074 @default.
- W3109304495 hasRelatedWork W4377964522 @default.
- W3109304495 hasVolume "9" @default.
- W3109304495 isParatext "false" @default.
- W3109304495 isRetracted "false" @default.