Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109335029> ?p ?o ?g. }
- W3109335029 abstract "Introduction. Effectively modeling SARS-CoV-2/COVID-19 dynamics requires careful integration of population health (public health motivation) and recovery dynamics (medical interventions motivation). This manuscript proposes a minimal pandemic model, which conceptually separates complex adaptive systems (CAS) associated with social behavior and infrastructure (e.g., tractable input events modulating exposure) from idealized bio-CAS (e.g., the immune system). The proposed model structure extends the classic simple SEIR (susceptible, exposed, infected, resistant/recovered) uni-causal compartmental model, widely used in epidemiology, into an 8th-order functional network SEI 3 R 2 S-Nrec model structure, with infection partitioned into three severity states (e.g., starts in I1 [mostly asymptomatic], then I2 if notable symptoms, then I3 if ideally hospitalized) that connect via a lattice of fluxes to two resistant (R) states. Here Nrec (not recovered) represents a placeholder for better tying emerging COVID-19 medical research findings with those from epidemiology. Methods. Borrowing from fuzzy logic, a given model represents a Universe of Discourse (UoD) that is based on assumptions. Nonlinear flux rates are implemented using the classic Hill function, widely used in the biochemical and pharmaceutical fields and intuitive for inclusion within differential equations. There is support for encounter input events that modulate ongoing E (exposures) fluxes via S↔I1 and other I1/2/3 encounters, partitioned into a social/group (u SG (t)) behavioral subgroup (e.g., ideally informed by evolving science best-practices), and a smaller u TB (t) subgroup with added spreader lifestyle and event support. In addition to signal and flux trajectories (e.g., plotted over 300 days), key cumulative output metrics include fluxes such as I3→D deaths, I2→I3 hospital admittances, I1→I2 related to cases and R1+R2 resistant. The code, currently available as a well-commented Matlab Live Script file, uses a common modeling framework developed for a portfolio of other physiological models that tie to a planned textbook; an interactive web-based version will follow. Results. Default population results are provided for the USA as a whole, three states in which this author has lived (Arizona, Wisconsin, Oregon), and several special hypothetical cases of idealized UoDs (e.g., nursing home; healthy lower-risk mostly on I1→R1 path to evaluate reinfection possibilities). Often known events were included (e.g., pulses for holiday weekends; Trump/governor-inspired summer outbreak in Arizona). Runs were mildly tuned by the author, in two stages: i) mild model-tuning (e.g., for risk demographics such as obesity), then ii) iterative input tuning to obtain similar overall March-thru-November curve shapes and appropriate cumulative numbers (recognizing limitations of data like cases). Predictions are consistent deaths, and CDC estimates of actual cases and immunity (e.g., antibodies). Results could be further refined by groups with more resources (human, data access, computational). It is hoped that its structure and causal predictions might prove helpful to policymakers, medical professionals, and on the ground managers of science-based interventions. Discussion and Future Directions. These include: i) sensitivity of the model to parameters; ii) possible next steps for this SEI3R2S-Nrec framework such as dynamic sub-models to better address compartment-specific forms of population diversity (e.g., for E [host-parasite biophysics], I's [infection diversity], and/or R's [immune diversity]); iii) model's potential utility as a framework for applying optimal/feedback control engineering to help manage the ongoing pandemic response in the context of competing subcriteria and emerging new tools (e.g., more timely testing, vaccines); and iv) ways in which the Nrec medical submodel could be expanded to provide refined estimates of the types of tissue damage, impairments and dysfunction that are known byproducts of the COVID-19 disease process, including as a function of existing comorbidities." @default.
- W3109335029 created "2020-12-07" @default.
- W3109335029 creator A5076094541 @default.
- W3109335029 date "2020-12-03" @default.
- W3109335029 modified "2023-09-29" @default.
- W3109335029 title "A Novel Model for Simulating COVID-19 Dynamics Through Layered Infection States that Integrate Concepts from Epidemiology, Biophysics and Medicine: SEI<sub>3</sub>R<sub>2</sub>S-Nrec" @default.
- W3109335029 cites W1965499304 @default.
- W3109335029 cites W1989665358 @default.
- W3109335029 cites W2016674662 @default.
- W3109335029 cites W2147044740 @default.
- W3109335029 cites W2153212297 @default.
- W3109335029 cites W2165769802 @default.
- W3109335029 cites W2167384912 @default.
- W3109335029 cites W2171648521 @default.
- W3109335029 cites W2811308154 @default.
- W3109335029 cites W3000131314 @default.
- W3109335029 cites W3014271510 @default.
- W3109335029 cites W3015988827 @default.
- W3109335029 cites W3016540417 @default.
- W3109335029 cites W3017119695 @default.
- W3109335029 cites W3017331996 @default.
- W3109335029 cites W3021024241 @default.
- W3109335029 cites W3021967842 @default.
- W3109335029 cites W3024096493 @default.
- W3109335029 cites W3024297686 @default.
- W3109335029 cites W3027630905 @default.
- W3109335029 cites W3030991920 @default.
- W3109335029 cites W3032629753 @default.
- W3109335029 cites W3033504345 @default.
- W3109335029 cites W3033962914 @default.
- W3109335029 cites W3036931136 @default.
- W3109335029 cites W3040064613 @default.
- W3109335029 cites W3041284156 @default.
- W3109335029 cites W3044072752 @default.
- W3109335029 cites W3044311014 @default.
- W3109335029 cites W3046463683 @default.
- W3109335029 cites W3046861748 @default.
- W3109335029 cites W3073913934 @default.
- W3109335029 cites W3080434732 @default.
- W3109335029 cites W3084149299 @default.
- W3109335029 cites W3090007319 @default.
- W3109335029 cites W3090298316 @default.
- W3109335029 cites W3092110298 @default.
- W3109335029 cites W3093520399 @default.
- W3109335029 cites W3093610264 @default.
- W3109335029 cites W3095199486 @default.
- W3109335029 cites W3099011804 @default.
- W3109335029 cites W3102781630 @default.
- W3109335029 cites W3103141125 @default.
- W3109335029 cites W3122659253 @default.
- W3109335029 cites W3131531807 @default.
- W3109335029 cites W4242285942 @default.
- W3109335029 cites W592569499 @default.
- W3109335029 doi "https://doi.org/10.1101/2020.12.01.20242263" @default.
- W3109335029 hasPublicationYear "2020" @default.
- W3109335029 type Work @default.
- W3109335029 sameAs 3109335029 @default.
- W3109335029 citedByCount "0" @default.
- W3109335029 crossrefType "posted-content" @default.
- W3109335029 hasAuthorship W3109335029A5076094541 @default.
- W3109335029 hasBestOaLocation W31093350291 @default.
- W3109335029 hasConcept C107130276 @default.
- W3109335029 hasConcept C126322002 @default.
- W3109335029 hasConcept C138816342 @default.
- W3109335029 hasConcept C159110408 @default.
- W3109335029 hasConcept C1627819 @default.
- W3109335029 hasConcept C20129857 @default.
- W3109335029 hasConcept C2908647359 @default.
- W3109335029 hasConcept C41008148 @default.
- W3109335029 hasConcept C60644358 @default.
- W3109335029 hasConcept C71924100 @default.
- W3109335029 hasConcept C86803240 @default.
- W3109335029 hasConcept C99454951 @default.
- W3109335029 hasConceptScore W3109335029C107130276 @default.
- W3109335029 hasConceptScore W3109335029C126322002 @default.
- W3109335029 hasConceptScore W3109335029C138816342 @default.
- W3109335029 hasConceptScore W3109335029C159110408 @default.
- W3109335029 hasConceptScore W3109335029C1627819 @default.
- W3109335029 hasConceptScore W3109335029C20129857 @default.
- W3109335029 hasConceptScore W3109335029C2908647359 @default.
- W3109335029 hasConceptScore W3109335029C41008148 @default.
- W3109335029 hasConceptScore W3109335029C60644358 @default.
- W3109335029 hasConceptScore W3109335029C71924100 @default.
- W3109335029 hasConceptScore W3109335029C86803240 @default.
- W3109335029 hasConceptScore W3109335029C99454951 @default.
- W3109335029 hasLocation W31093350291 @default.
- W3109335029 hasOpenAccess W3109335029 @default.
- W3109335029 hasPrimaryLocation W31093350291 @default.
- W3109335029 hasRelatedWork W1528770862 @default.
- W3109335029 hasRelatedWork W2049710890 @default.
- W3109335029 hasRelatedWork W2085417811 @default.
- W3109335029 hasRelatedWork W2132343322 @default.
- W3109335029 hasRelatedWork W2365640140 @default.
- W3109335029 hasRelatedWork W2482964419 @default.
- W3109335029 hasRelatedWork W2748952813 @default.
- W3109335029 hasRelatedWork W2899084033 @default.
- W3109335029 hasRelatedWork W2992807734 @default.
- W3109335029 hasRelatedWork W4210944921 @default.
- W3109335029 isParatext "false" @default.
- W3109335029 isRetracted "false" @default.