Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109442942> ?p ?o ?g. }
- W3109442942 endingPage "577.e12" @default.
- W3109442942 startingPage "564" @default.
- W3109442942 abstract "Wounding and infection trigger a protective innate immune response that includes the production of antimicrobial peptides in the affected tissue as well as increased sleep. Little is known, however, how peripheral wounds or innate immunity signal to the nervous system to increase sleep. We found that, during C. elegans larval molting, an epidermal tolloid/bone morphogenic protein (BMP)-1-like protein called NAS-38 promotes sleep. NAS-38 is negatively regulated by its thrombospondin domain and acts through its astacin protease domain to activate p38 mitogen-activated protein (MAP)/PMK-1 kinase and transforming growth factor β (TGF-β)-SMAD/SMA-3-dependent innate immune pathways in the epidermis that cause STAT/STA-2 and SLC6 (solute carrier)/SNF-12-dependent expression of antimicrobial peptide (AMP) genes. We show that more than a dozen epidermal AMPs act as somnogens, signaling across tissues to promote sleep through the sleep-active RIS neuron. In the adult, epidermal injury activates innate immunity and turns up AMP production to trigger sleep, a process that requires epidermal growth factor receptor (EGFR) signaling that is known to promote sleep following cellular stress. We show for one AMP, neuropeptide-like protein (NLP)-29, that it acts through the neuropeptide receptor NPR-12 in locomotion-controlling neurons that are presynaptic to RIS and that depolarize this neuron to induce sleep. Sleep in turn increases the chance of surviving injury. Thus, we found a novel mechanism by which peripheral wounds signal to the nervous system to increase protective sleep. Such a cross-tissue somnogen-signaling function of AMPs might also boost sleep in other animals, including humans." @default.
- W3109442942 created "2020-12-07" @default.
- W3109442942 creator A5032329391 @default.
- W3109442942 creator A5036023533 @default.
- W3109442942 creator A5054683955 @default.
- W3109442942 creator A5070270589 @default.
- W3109442942 creator A5084370562 @default.
- W3109442942 date "2021-02-01" @default.
- W3109442942 modified "2023-10-06" @default.
- W3109442942 title "Innate Immunity Promotes Sleep through Epidermal Antimicrobial Peptides" @default.
- W3109442942 cites W1696199194 @default.
- W3109442942 cites W1726094883 @default.
- W3109442942 cites W1779727726 @default.
- W3109442942 cites W1911220294 @default.
- W3109442942 cites W1921494752 @default.
- W3109442942 cites W1944127002 @default.
- W3109442942 cites W1966145280 @default.
- W3109442942 cites W1970762617 @default.
- W3109442942 cites W1971621161 @default.
- W3109442942 cites W1980120566 @default.
- W3109442942 cites W1980179012 @default.
- W3109442942 cites W1989842618 @default.
- W3109442942 cites W1990211095 @default.
- W3109442942 cites W1990836003 @default.
- W3109442942 cites W1992241459 @default.
- W3109442942 cites W1997868832 @default.
- W3109442942 cites W2002879092 @default.
- W3109442942 cites W2005086364 @default.
- W3109442942 cites W2007742744 @default.
- W3109442942 cites W2009558990 @default.
- W3109442942 cites W2011580879 @default.
- W3109442942 cites W2011983584 @default.
- W3109442942 cites W2017246643 @default.
- W3109442942 cites W2017797880 @default.
- W3109442942 cites W2020400086 @default.
- W3109442942 cites W2027190923 @default.
- W3109442942 cites W2036975953 @default.
- W3109442942 cites W2049445917 @default.
- W3109442942 cites W2055581281 @default.
- W3109442942 cites W2058605720 @default.
- W3109442942 cites W2059473757 @default.
- W3109442942 cites W2069960805 @default.
- W3109442942 cites W2072681733 @default.
- W3109442942 cites W2074892979 @default.
- W3109442942 cites W2079458003 @default.
- W3109442942 cites W2087072206 @default.
- W3109442942 cites W2092784580 @default.
- W3109442942 cites W2095785516 @default.
- W3109442942 cites W2097866765 @default.
- W3109442942 cites W2098070256 @default.
- W3109442942 cites W2102089623 @default.
- W3109442942 cites W2104696695 @default.
- W3109442942 cites W2104818214 @default.
- W3109442942 cites W2114839546 @default.
- W3109442942 cites W2116472161 @default.
- W3109442942 cites W2123138830 @default.
- W3109442942 cites W2124492445 @default.
- W3109442942 cites W2141425631 @default.
- W3109442942 cites W2142305917 @default.
- W3109442942 cites W2146274451 @default.
- W3109442942 cites W2148418653 @default.
- W3109442942 cites W2152249924 @default.
- W3109442942 cites W2154431984 @default.
- W3109442942 cites W2161387562 @default.
- W3109442942 cites W2164515554 @default.
- W3109442942 cites W2168390713 @default.
- W3109442942 cites W2169940731 @default.
- W3109442942 cites W2182819013 @default.
- W3109442942 cites W2269759225 @default.
- W3109442942 cites W2298484317 @default.
- W3109442942 cites W2307219516 @default.
- W3109442942 cites W2318671960 @default.
- W3109442942 cites W2328605528 @default.
- W3109442942 cites W2344653737 @default.
- W3109442942 cites W2469581134 @default.
- W3109442942 cites W2529589889 @default.
- W3109442942 cites W2655812336 @default.
- W3109442942 cites W2738520358 @default.
- W3109442942 cites W2781683041 @default.
- W3109442942 cites W2788519071 @default.
- W3109442942 cites W2796181051 @default.
- W3109442942 cites W2900437112 @default.
- W3109442942 cites W2914373639 @default.
- W3109442942 cites W2927147597 @default.
- W3109442942 cites W2987537097 @default.
- W3109442942 cites W2995442739 @default.
- W3109442942 cites W3004089940 @default.
- W3109442942 cites W3008498562 @default.
- W3109442942 cites W3010441461 @default.
- W3109442942 cites W3023047606 @default.
- W3109442942 cites W3087472947 @default.
- W3109442942 cites W4210338521 @default.
- W3109442942 cites W4241713541 @default.
- W3109442942 doi "https://doi.org/10.1016/j.cub.2020.10.076" @default.
- W3109442942 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33259791" @default.
- W3109442942 hasPublicationYear "2021" @default.
- W3109442942 type Work @default.
- W3109442942 sameAs 3109442942 @default.