Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109459504> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3109459504 endingPage "7315" @default.
- W3109459504 startingPage "7303" @default.
- W3109459504 abstract "The emergent ecosystems of intelligent edge devices in diverse Internet-of-Things (IoT) applications, from automatic surveillance to precision agriculture, increasingly rely on recording and processing a variety of image data. Due to resource constraints, e.g., energy and communication bandwidth requirements, these applications require compressing the recorded images before transmission. For these applications, image compression commonly requires: 1) maintaining features for coarse-grain pattern recognition instead of the high-level details for human perception due to machine-to-machine communications; 2) high compression ratio that leads to improved energy and transmission efficiency; and 3) large dynamic range of compression and an easy tradeoff between compression factor and quality of reconstruction to accommodate a wide diversity of IoT applications as well as their time-varying energy/performance needs. To address these requirements, we propose, MAGIC, a novel machine learning (ML)-guided image compression framework that judiciously sacrifices the visual quality to achieve much higher compression when compared to traditional techniques, while maintaining accuracy for coarse-grained vision tasks. The central idea is to capture application-specific domain knowledge and efficiently utilize it in achieving high compression. We demonstrate that the MAGIC framework is configurable across a wide range of compression/quality and is capable of compressing beyond the standard quality factor limits of both JPEG 2000 and WebP. We perform experiments on representative IoT applications using two vision data sets and show 42.65× compression at similar accuracy with respect to the source. We highlight low variance in compression rate across images using our technique as compared to JPEG 2000 and WebP." @default.
- W3109459504 created "2020-12-07" @default.
- W3109459504 creator A5013184572 @default.
- W3109459504 creator A5036621906 @default.
- W3109459504 creator A5039442844 @default.
- W3109459504 date "2021-05-01" @default.
- W3109459504 modified "2023-10-11" @default.
- W3109459504 title "MAGIC: Machine-Learning-Guided Image Compression for Vision Applications in Internet of Things" @default.
- W3109459504 cites W1557452405 @default.
- W3109459504 cites W2015159529 @default.
- W3109459504 cites W2060108852 @default.
- W3109459504 cites W2107106521 @default.
- W3109459504 cites W2107927941 @default.
- W3109459504 cites W2118217749 @default.
- W3109459504 cites W2128880484 @default.
- W3109459504 cites W2500254170 @default.
- W3109459504 cites W2569436968 @default.
- W3109459504 cites W2604392022 @default.
- W3109459504 cites W2752620483 @default.
- W3109459504 cites W2759601165 @default.
- W3109459504 cites W2768223511 @default.
- W3109459504 cites W2789561488 @default.
- W3109459504 cites W2792447253 @default.
- W3109459504 cites W2896969435 @default.
- W3109459504 cites W2897098321 @default.
- W3109459504 cites W2914440067 @default.
- W3109459504 cites W2963149687 @default.
- W3109459504 cites W2963503375 @default.
- W3109459504 cites W2963760946 @default.
- W3109459504 cites W2989413245 @default.
- W3109459504 doi "https://doi.org/10.1109/jiot.2020.3040729" @default.
- W3109459504 hasPublicationYear "2021" @default.
- W3109459504 type Work @default.
- W3109459504 sameAs 3109459504 @default.
- W3109459504 citedByCount "6" @default.
- W3109459504 countsByYear W31094595042021 @default.
- W3109459504 countsByYear W31094595042022 @default.
- W3109459504 countsByYear W31094595042023 @default.
- W3109459504 crossrefType "journal-article" @default.
- W3109459504 hasAuthorship W3109459504A5013184572 @default.
- W3109459504 hasAuthorship W3109459504A5036621906 @default.
- W3109459504 hasAuthorship W3109459504A5039442844 @default.
- W3109459504 hasConcept C113775141 @default.
- W3109459504 hasConcept C115961682 @default.
- W3109459504 hasConcept C13481523 @default.
- W3109459504 hasConcept C154945302 @default.
- W3109459504 hasConcept C198751489 @default.
- W3109459504 hasConcept C31972630 @default.
- W3109459504 hasConcept C41008148 @default.
- W3109459504 hasConcept C5339829 @default.
- W3109459504 hasConcept C78548338 @default.
- W3109459504 hasConcept C79403827 @default.
- W3109459504 hasConcept C9417928 @default.
- W3109459504 hasConcept C94835093 @default.
- W3109459504 hasConceptScore W3109459504C113775141 @default.
- W3109459504 hasConceptScore W3109459504C115961682 @default.
- W3109459504 hasConceptScore W3109459504C13481523 @default.
- W3109459504 hasConceptScore W3109459504C154945302 @default.
- W3109459504 hasConceptScore W3109459504C198751489 @default.
- W3109459504 hasConceptScore W3109459504C31972630 @default.
- W3109459504 hasConceptScore W3109459504C41008148 @default.
- W3109459504 hasConceptScore W3109459504C5339829 @default.
- W3109459504 hasConceptScore W3109459504C78548338 @default.
- W3109459504 hasConceptScore W3109459504C79403827 @default.
- W3109459504 hasConceptScore W3109459504C9417928 @default.
- W3109459504 hasConceptScore W3109459504C94835093 @default.
- W3109459504 hasIssue "9" @default.
- W3109459504 hasLocation W31094595041 @default.
- W3109459504 hasOpenAccess W3109459504 @default.
- W3109459504 hasPrimaryLocation W31094595041 @default.
- W3109459504 hasRelatedWork W2046870515 @default.
- W3109459504 hasRelatedWork W2394038673 @default.
- W3109459504 hasRelatedWork W2469097562 @default.
- W3109459504 hasRelatedWork W2742766746 @default.
- W3109459504 hasRelatedWork W2914940215 @default.
- W3109459504 hasRelatedWork W3004418277 @default.
- W3109459504 hasRelatedWork W3109459504 @default.
- W3109459504 hasRelatedWork W3206274587 @default.
- W3109459504 hasRelatedWork W2185895540 @default.
- W3109459504 hasRelatedWork W3106612471 @default.
- W3109459504 hasVolume "8" @default.
- W3109459504 isParatext "false" @default.
- W3109459504 isRetracted "false" @default.
- W3109459504 magId "3109459504" @default.
- W3109459504 workType "article" @default.