Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109498220> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3109498220 endingPage "108153" @default.
- W3109498220 startingPage "108153" @default.
- W3109498220 abstract "The physical properties of tight shale reservoirs have always been a hot topic of discussion, and the tuff reservoirs have also attracted more and more attention. Log predicting of the porosity is also important for the exploration and development of tight oil. Tight oil resources have been found in tight shale and tuff reservoirs in the Chang 7 Member of the Upper Triassic Yanchang Formation in the Ordos Basin, China. However, the logging method that effectively predicting porosity of the Chang 7 Member is lacking, and few people have discussed how to optimize the log interpretation methods. In this study, the characteristics of shale and tuff reservoirs were summarized by microscope and scanning electron microscope observation, X-ray diffraction, pore and permeability experiment, and the logging data. In order to find the optimal method of porosity prediction, four methods were performed: multiple regression fitting, multi-component volume model, porosity logging formula, and back propagation neural network method. The “Zhangjiatan Shale” of the Chang 7 Member is characterized by abundant sandy lamina and tuff lamina, compared with the tuff reservoir, the enrichment of pyrite (average 22.7 wt%) and total organic matter (>6%) increase the content of intercrystalline pores and organic matter related pores, the logging response is characterized by high natural gamma ray, low spontaneous potential and high acoustic. The tuff reservoir is mainly composed of vitric tuff and crystal-vitric tuff, hence, the rich in intergranular pore and micro-fracture can be explained by the dissolution and devitrification of vitric and crystal fragments, and the logging characteristic is opposite to that of the “Zhangjiatan Shale”. Four methods for predicting porosity are established. First, appropriate logging parameters are selected for regression fitting in the “Zhangjiatan Shale” (e.g., gamma ray, deep lateral logging resistivity, density and spontaneous potential) and tuff reservoir (e.g., acoustic, density, compensated neutron logging). Then, the rock multi-component volume model was established as rock skeleton, clay or tuff matter, organic matter, and pores. The logging parameters of the skeleton, clay and organic matter were obtained by intersection graphs, which were applied in the improved porosity logging formulas. The effect of organic matter on logging was considered into the traditional porosity prediction formula, a third prediction method was established. Finally, the BP method was introduced into the porosity prediction work, and the neural network parameters were adjusted according to the log and porosity data. The learning rate and the learning accuracy were set as 0.1 and 10−6 in the study area. The error analysis between the result predicted and measured shows that the multi-component volume model is suitable for the “Zhangjiatan Shale” (the correlative coefficient R>80%), while the back propagation neural network is the best method for the tuff reservoir (the correlative coefficient R>90%)." @default.
- W3109498220 created "2020-12-07" @default.
- W3109498220 creator A5024980938 @default.
- W3109498220 creator A5041131583 @default.
- W3109498220 creator A5045309022 @default.
- W3109498220 creator A5045531832 @default.
- W3109498220 creator A5046510326 @default.
- W3109498220 creator A5052503829 @default.
- W3109498220 creator A5061013435 @default.
- W3109498220 date "2021-03-01" @default.
- W3109498220 modified "2023-10-14" @default.
- W3109498220 title "Study on optimal selection of porosity logging interpretation methods for Chang 73 segment of the Yanchang Formation in the southwestern Ordos Basin, China" @default.
- W3109498220 cites W1993252592 @default.
- W3109498220 cites W2014580488 @default.
- W3109498220 cites W2029600579 @default.
- W3109498220 cites W2058257812 @default.
- W3109498220 cites W2058508209 @default.
- W3109498220 cites W2071771565 @default.
- W3109498220 cites W2156608310 @default.
- W3109498220 cites W2299953952 @default.
- W3109498220 cites W2478710339 @default.
- W3109498220 cites W2515699246 @default.
- W3109498220 cites W2561710022 @default.
- W3109498220 cites W2613659250 @default.
- W3109498220 cites W2793335322 @default.
- W3109498220 cites W2884227575 @default.
- W3109498220 cites W2971360225 @default.
- W3109498220 doi "https://doi.org/10.1016/j.petrol.2020.108153" @default.
- W3109498220 hasPublicationYear "2021" @default.
- W3109498220 type Work @default.
- W3109498220 sameAs 3109498220 @default.
- W3109498220 citedByCount "13" @default.
- W3109498220 countsByYear W31094982202021 @default.
- W3109498220 countsByYear W31094982202022 @default.
- W3109498220 countsByYear W31094982202023 @default.
- W3109498220 crossrefType "journal-article" @default.
- W3109498220 hasAuthorship W3109498220A5024980938 @default.
- W3109498220 hasAuthorship W3109498220A5041131583 @default.
- W3109498220 hasAuthorship W3109498220A5045309022 @default.
- W3109498220 hasAuthorship W3109498220A5045531832 @default.
- W3109498220 hasAuthorship W3109498220A5046510326 @default.
- W3109498220 hasAuthorship W3109498220A5052503829 @default.
- W3109498220 hasAuthorship W3109498220A5061013435 @default.
- W3109498220 hasConcept C125620115 @default.
- W3109498220 hasConcept C127313418 @default.
- W3109498220 hasConcept C151730666 @default.
- W3109498220 hasConcept C153127940 @default.
- W3109498220 hasConcept C17409809 @default.
- W3109498220 hasConcept C187320778 @default.
- W3109498220 hasConcept C18903297 @default.
- W3109498220 hasConcept C199289684 @default.
- W3109498220 hasConcept C5900021 @default.
- W3109498220 hasConcept C6648577 @default.
- W3109498220 hasConcept C66606449 @default.
- W3109498220 hasConcept C78641617 @default.
- W3109498220 hasConcept C86803240 @default.
- W3109498220 hasConceptScore W3109498220C125620115 @default.
- W3109498220 hasConceptScore W3109498220C127313418 @default.
- W3109498220 hasConceptScore W3109498220C151730666 @default.
- W3109498220 hasConceptScore W3109498220C153127940 @default.
- W3109498220 hasConceptScore W3109498220C17409809 @default.
- W3109498220 hasConceptScore W3109498220C187320778 @default.
- W3109498220 hasConceptScore W3109498220C18903297 @default.
- W3109498220 hasConceptScore W3109498220C199289684 @default.
- W3109498220 hasConceptScore W3109498220C5900021 @default.
- W3109498220 hasConceptScore W3109498220C6648577 @default.
- W3109498220 hasConceptScore W3109498220C66606449 @default.
- W3109498220 hasConceptScore W3109498220C78641617 @default.
- W3109498220 hasConceptScore W3109498220C86803240 @default.
- W3109498220 hasFunder F4320321001 @default.
- W3109498220 hasFunder F4320326291 @default.
- W3109498220 hasFunder F4320335960 @default.
- W3109498220 hasLocation W31094982201 @default.
- W3109498220 hasOpenAccess W3109498220 @default.
- W3109498220 hasPrimaryLocation W31094982201 @default.
- W3109498220 hasRelatedWork W158617135 @default.
- W3109498220 hasRelatedWork W2010653094 @default.
- W3109498220 hasRelatedWork W2359320105 @default.
- W3109498220 hasRelatedWork W265520908 @default.
- W3109498220 hasRelatedWork W3021654840 @default.
- W3109498220 hasRelatedWork W3111162507 @default.
- W3109498220 hasRelatedWork W3125241895 @default.
- W3109498220 hasRelatedWork W4206793658 @default.
- W3109498220 hasRelatedWork W4313530606 @default.
- W3109498220 hasRelatedWork W4366425605 @default.
- W3109498220 hasVolume "198" @default.
- W3109498220 isParatext "false" @default.
- W3109498220 isRetracted "false" @default.
- W3109498220 magId "3109498220" @default.
- W3109498220 workType "article" @default.