Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109584183> ?p ?o ?g. }
- W3109584183 abstract "Facial Emotion Recognition is considered very significant for Human Computer Interaction (HCI) and they play a vital role in everyday human life. In recent years Convolutional Neural Network (CNNs) has become very popular among researcher for image analysis, because CNNs have generated remarkable results. However, CNNs needs a lot of data to train from scratch. This problem has been addressed by several researchers who have trained CNNs with millions of images, this training knowledge can also be used in a different task which is known as Transfer Learning. AlexNet is one of the best pre-trained CNNs. Our work reflects a brief comparison between modern pre-trained CNNs and using transfer learning with classification approach like Support Vector Machine (SVM), generally known as hybrid classifier. The testing has been done on two very popular expression database Cohn-Kanade+ (CK+) database and Natural Visible and Infrared Expression (NVIE) database. Results clearly depicts that pre-trained CNNs produces better result than handcrafted approaches." @default.
- W3109584183 created "2020-12-07" @default.
- W3109584183 creator A5003012052 @default.
- W3109584183 creator A5029317503 @default.
- W3109584183 creator A5041161851 @default.
- W3109584183 creator A5041835123 @default.
- W3109584183 creator A5068739772 @default.
- W3109584183 creator A5080371676 @default.
- W3109584183 date "2020-09-09" @default.
- W3109584183 modified "2023-10-16" @default.
- W3109584183 title "Facial Emotion Recognition Using Transfer Learning" @default.
- W3109584183 cites W1153638794 @default.
- W3109584183 cites W1849277567 @default.
- W3109584183 cites W191316497 @default.
- W3109584183 cites W1991129058 @default.
- W3109584183 cites W1996194485 @default.
- W3109584183 cites W1996303439 @default.
- W3109584183 cites W2014185685 @default.
- W3109584183 cites W2044188769 @default.
- W3109584183 cites W2050794635 @default.
- W3109584183 cites W2097117768 @default.
- W3109584183 cites W2103943262 @default.
- W3109584183 cites W2106947945 @default.
- W3109584183 cites W2144846685 @default.
- W3109584183 cites W2147650024 @default.
- W3109584183 cites W2163345210 @default.
- W3109584183 cites W2194775991 @default.
- W3109584183 cites W2213487433 @default.
- W3109584183 cites W2294391744 @default.
- W3109584183 cites W2409119157 @default.
- W3109584183 cites W2549095125 @default.
- W3109584183 cites W2551403050 @default.
- W3109584183 cites W2556247010 @default.
- W3109584183 cites W2576433170 @default.
- W3109584183 cites W2618530766 @default.
- W3109584183 cites W2658181905 @default.
- W3109584183 cites W2734395796 @default.
- W3109584183 cites W389781634 @default.
- W3109584183 cites W4230452332 @default.
- W3109584183 cites W1580352921 @default.
- W3109584183 doi "https://doi.org/10.1109/iccit-144147971.2020.9213757" @default.
- W3109584183 hasPublicationYear "2020" @default.
- W3109584183 type Work @default.
- W3109584183 sameAs 3109584183 @default.
- W3109584183 citedByCount "13" @default.
- W3109584183 countsByYear W31095841832021 @default.
- W3109584183 countsByYear W31095841832022 @default.
- W3109584183 countsByYear W31095841832023 @default.
- W3109584183 crossrefType "proceedings-article" @default.
- W3109584183 hasAuthorship W3109584183A5003012052 @default.
- W3109584183 hasAuthorship W3109584183A5029317503 @default.
- W3109584183 hasAuthorship W3109584183A5041161851 @default.
- W3109584183 hasAuthorship W3109584183A5041835123 @default.
- W3109584183 hasAuthorship W3109584183A5068739772 @default.
- W3109584183 hasAuthorship W3109584183A5080371676 @default.
- W3109584183 hasConcept C108583219 @default.
- W3109584183 hasConcept C111919701 @default.
- W3109584183 hasConcept C115961682 @default.
- W3109584183 hasConcept C119857082 @default.
- W3109584183 hasConcept C12267149 @default.
- W3109584183 hasConcept C150899416 @default.
- W3109584183 hasConcept C153180895 @default.
- W3109584183 hasConcept C154945302 @default.
- W3109584183 hasConcept C162324750 @default.
- W3109584183 hasConcept C187736073 @default.
- W3109584183 hasConcept C195704467 @default.
- W3109584183 hasConcept C2780451532 @default.
- W3109584183 hasConcept C2781235140 @default.
- W3109584183 hasConcept C28490314 @default.
- W3109584183 hasConcept C31510193 @default.
- W3109584183 hasConcept C41008148 @default.
- W3109584183 hasConcept C75294576 @default.
- W3109584183 hasConcept C81363708 @default.
- W3109584183 hasConcept C95623464 @default.
- W3109584183 hasConceptScore W3109584183C108583219 @default.
- W3109584183 hasConceptScore W3109584183C111919701 @default.
- W3109584183 hasConceptScore W3109584183C115961682 @default.
- W3109584183 hasConceptScore W3109584183C119857082 @default.
- W3109584183 hasConceptScore W3109584183C12267149 @default.
- W3109584183 hasConceptScore W3109584183C150899416 @default.
- W3109584183 hasConceptScore W3109584183C153180895 @default.
- W3109584183 hasConceptScore W3109584183C154945302 @default.
- W3109584183 hasConceptScore W3109584183C162324750 @default.
- W3109584183 hasConceptScore W3109584183C187736073 @default.
- W3109584183 hasConceptScore W3109584183C195704467 @default.
- W3109584183 hasConceptScore W3109584183C2780451532 @default.
- W3109584183 hasConceptScore W3109584183C2781235140 @default.
- W3109584183 hasConceptScore W3109584183C28490314 @default.
- W3109584183 hasConceptScore W3109584183C31510193 @default.
- W3109584183 hasConceptScore W3109584183C41008148 @default.
- W3109584183 hasConceptScore W3109584183C75294576 @default.
- W3109584183 hasConceptScore W3109584183C81363708 @default.
- W3109584183 hasConceptScore W3109584183C95623464 @default.
- W3109584183 hasLocation W31095841831 @default.
- W3109584183 hasOpenAccess W3109584183 @default.
- W3109584183 hasPrimaryLocation W31095841831 @default.
- W3109584183 hasRelatedWork W2738221750 @default.
- W3109584183 hasRelatedWork W2997709384 @default.
- W3109584183 hasRelatedWork W3003311494 @default.
- W3109584183 hasRelatedWork W3012393889 @default.