Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109612811> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3109612811 endingPage "1424" @default.
- W3109612811 startingPage "1424" @default.
- W3109612811 abstract "1424 Introduction: PSMA-directed radioligand therapy (RLT) has become one of the effective treatment options for metastatic castration-resistant prostate cancer (mCRPC). However, individual treatment planning is still not feasible as it is for the external beam radiotherapy. Our group has presented an organ-based research in the prediction of post-therapy dosimetry in 2019. However, an organ-based approach is unable to reveal the heterogeneity of dose distribution and therefore is not sufficient for the realization of treatment planning. In this study, we propose an approach for voxel-wise prediction of post-therapy dosimetry from pre-therapy positron emission tomography (PET) using deep learning.Materials and Methods: 30 patients with mCRPC treated with 177Lu-PSMA I&T RLT were retrospectively included in this study. Totally 48 treatment cycles with 68Ga-PSMA-11 PET/CT directly before the treatment and at least 3 post-therapeutic SPECT/CT dosimetry imaging were considered for this proof-of-concept study. Post-therapy voxel-wise dosimetry was calculated using Hermes Voxel Dosimetry. 3D RLT Dose generative adversarial networks (GANs) were developed with a 3D U-net generator and a convolutional neural network (CNN) based discriminator. A dual-input-model was designed to incorporate both information from PET and CT, for the purpose of anatomical coregistration. Both voxel-wise content loss alongside image-wise loss were taken into account for better synthesis performance. K-fold cross validation was applied to verify the trained network. Results: The proposed 3D RLT Dose GANs achieved the voxel-wise mean absolute percentage error (MAPE) of 17.56%±5.42%. The dual-input-model was able to synthesize dose maps with comparable accuracy while preserving anatomical consistency, which achieved a MAPE of 18.94%±5.65%. Conclusions: Our preliminary results demonstrate the potential of artificial intelligence to estimate voxel-wise post-therapy dosimetry both qualitatively and quantitatively. This may provide a practical solution to improve the dosimetry-guided treatment planning for RLT." @default.
- W3109612811 created "2020-12-07" @default.
- W3109612811 creator A5004890107 @default.
- W3109612811 creator A5012025332 @default.
- W3109612811 creator A5061816724 @default.
- W3109612811 creator A5065710231 @default.
- W3109612811 creator A5067941796 @default.
- W3109612811 creator A5083651238 @default.
- W3109612811 date "2020-05-01" @default.
- W3109612811 modified "2023-09-23" @default.
- W3109612811 title "Voxel-wise Prediction of Post-therapy Dosimetry for 177Lu-PSMA I&T Therapy using Deep Learning" @default.
- W3109612811 hasPublicationYear "2020" @default.
- W3109612811 type Work @default.
- W3109612811 sameAs 3109612811 @default.
- W3109612811 citedByCount "1" @default.
- W3109612811 countsByYear W31096128112021 @default.
- W3109612811 crossrefType "journal-article" @default.
- W3109612811 hasAuthorship W3109612811A5004890107 @default.
- W3109612811 hasAuthorship W3109612811A5012025332 @default.
- W3109612811 hasAuthorship W3109612811A5061816724 @default.
- W3109612811 hasAuthorship W3109612811A5065710231 @default.
- W3109612811 hasAuthorship W3109612811A5067941796 @default.
- W3109612811 hasAuthorship W3109612811A5083651238 @default.
- W3109612811 hasConcept C108583219 @default.
- W3109612811 hasConcept C126838900 @default.
- W3109612811 hasConcept C154945302 @default.
- W3109612811 hasConcept C19527891 @default.
- W3109612811 hasConcept C201645570 @default.
- W3109612811 hasConcept C2775842073 @default.
- W3109612811 hasConcept C2989005 @default.
- W3109612811 hasConcept C2993559085 @default.
- W3109612811 hasConcept C41008148 @default.
- W3109612811 hasConcept C509974204 @default.
- W3109612811 hasConcept C54170458 @default.
- W3109612811 hasConcept C71924100 @default.
- W3109612811 hasConcept C75088862 @default.
- W3109612811 hasConceptScore W3109612811C108583219 @default.
- W3109612811 hasConceptScore W3109612811C126838900 @default.
- W3109612811 hasConceptScore W3109612811C154945302 @default.
- W3109612811 hasConceptScore W3109612811C19527891 @default.
- W3109612811 hasConceptScore W3109612811C201645570 @default.
- W3109612811 hasConceptScore W3109612811C2775842073 @default.
- W3109612811 hasConceptScore W3109612811C2989005 @default.
- W3109612811 hasConceptScore W3109612811C2993559085 @default.
- W3109612811 hasConceptScore W3109612811C41008148 @default.
- W3109612811 hasConceptScore W3109612811C509974204 @default.
- W3109612811 hasConceptScore W3109612811C54170458 @default.
- W3109612811 hasConceptScore W3109612811C71924100 @default.
- W3109612811 hasConceptScore W3109612811C75088862 @default.
- W3109612811 hasLocation W31096128111 @default.
- W3109612811 hasOpenAccess W3109612811 @default.
- W3109612811 hasPrimaryLocation W31096128111 @default.
- W3109612811 hasRelatedWork W1994672425 @default.
- W3109612811 hasRelatedWork W1994940711 @default.
- W3109612811 hasRelatedWork W2002329444 @default.
- W3109612811 hasRelatedWork W2034122714 @default.
- W3109612811 hasRelatedWork W2154483508 @default.
- W3109612811 hasRelatedWork W2231071698 @default.
- W3109612811 hasRelatedWork W2278212846 @default.
- W3109612811 hasRelatedWork W2886384023 @default.
- W3109612811 hasRelatedWork W2922384037 @default.
- W3109612811 hasRelatedWork W2947718391 @default.
- W3109612811 hasRelatedWork W2989931406 @default.
- W3109612811 hasRelatedWork W2996566216 @default.
- W3109612811 hasRelatedWork W3030399924 @default.
- W3109612811 hasRelatedWork W3054654410 @default.
- W3109612811 hasRelatedWork W3100375838 @default.
- W3109612811 hasRelatedWork W3102986501 @default.
- W3109612811 hasRelatedWork W3128681228 @default.
- W3109612811 hasRelatedWork W3163553549 @default.
- W3109612811 hasRelatedWork W3174659400 @default.
- W3109612811 hasRelatedWork W3178159249 @default.
- W3109612811 hasVolume "61" @default.
- W3109612811 isParatext "false" @default.
- W3109612811 isRetracted "false" @default.
- W3109612811 magId "3109612811" @default.
- W3109612811 workType "article" @default.