Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109633336> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3109633336 abstract "This paper examines the evolution of emotion intensity in dialogs occurring on Twitter between customer support representatives and clients (“users”). We focus on a single emotion type— frustration, modelling the user's level of frustration (on scale of 0 to 4) for each dialog turn and attempting to predict change of intensity from turn to turn, based on the text of turns from both dialog participants. As the modelling data, we used a subset of the Kaggle Customer Support on Twitter dataset annotated with per-turn frustration intensity ratings. For the modelling, we used a machine learning classifier for which dialog turns were represented by specifically selected bags of words. Since in our experimental setup the prediction classes (i.e., ratings) are not independent, to assess the classification quality, we examined different levels of accuracy imprecision tolerance. We showed that for frustration intensity prediction of actual dialog turns we can achieve a level of accuracy significantly higher than a statistical baseline. However we found that, as the intensity of user’s frustration tends to be stable across turns of the dialog, customer support turns have only a very limited immediate effect on the customer's level of frustration, so using the additional information from customer support turns doesn't help to predict future frustration level." @default.
- W3109633336 created "2020-12-07" @default.
- W3109633336 creator A5055848437 @default.
- W3109633336 creator A5084222707 @default.
- W3109633336 date "2020-11-21" @default.
- W3109633336 modified "2023-10-02" @default.
- W3109633336 title "Frustration Intensity Prediction in Customer Support Dialog Texts" @default.
- W3109633336 cites W1966797434 @default.
- W3109633336 cites W2250489604 @default.
- W3109633336 cites W2250867389 @default.
- W3109633336 cites W2611049140 @default.
- W3109633336 cites W2757162124 @default.
- W3109633336 cites W2788559111 @default.
- W3109633336 cites W2806028205 @default.
- W3109633336 cites W2929134750 @default.
- W3109633336 cites W2963094841 @default.
- W3109633336 cites W2971737394 @default.
- W3109633336 cites W3034533785 @default.
- W3109633336 cites W83379588 @default.
- W3109633336 doi "https://doi.org/10.5121/csit.2020.101419" @default.
- W3109633336 hasPublicationYear "2020" @default.
- W3109633336 type Work @default.
- W3109633336 sameAs 3109633336 @default.
- W3109633336 citedByCount "0" @default.
- W3109633336 crossrefType "proceedings-article" @default.
- W3109633336 hasAuthorship W3109633336A5055848437 @default.
- W3109633336 hasAuthorship W3109633336A5084222707 @default.
- W3109633336 hasBestOaLocation W31096333361 @default.
- W3109633336 hasConcept C111472728 @default.
- W3109633336 hasConcept C119857082 @default.
- W3109633336 hasConcept C136764020 @default.
- W3109633336 hasConcept C138885662 @default.
- W3109633336 hasConcept C154945302 @default.
- W3109633336 hasConcept C15744967 @default.
- W3109633336 hasConcept C173853756 @default.
- W3109633336 hasConcept C204321447 @default.
- W3109633336 hasConcept C2779530757 @default.
- W3109633336 hasConcept C38710091 @default.
- W3109633336 hasConcept C41008148 @default.
- W3109633336 hasConcept C66402592 @default.
- W3109633336 hasConcept C77805123 @default.
- W3109633336 hasConcept C95623464 @default.
- W3109633336 hasConceptScore W3109633336C111472728 @default.
- W3109633336 hasConceptScore W3109633336C119857082 @default.
- W3109633336 hasConceptScore W3109633336C136764020 @default.
- W3109633336 hasConceptScore W3109633336C138885662 @default.
- W3109633336 hasConceptScore W3109633336C154945302 @default.
- W3109633336 hasConceptScore W3109633336C15744967 @default.
- W3109633336 hasConceptScore W3109633336C173853756 @default.
- W3109633336 hasConceptScore W3109633336C204321447 @default.
- W3109633336 hasConceptScore W3109633336C2779530757 @default.
- W3109633336 hasConceptScore W3109633336C38710091 @default.
- W3109633336 hasConceptScore W3109633336C41008148 @default.
- W3109633336 hasConceptScore W3109633336C66402592 @default.
- W3109633336 hasConceptScore W3109633336C77805123 @default.
- W3109633336 hasConceptScore W3109633336C95623464 @default.
- W3109633336 hasLocation W31096333361 @default.
- W3109633336 hasOpenAccess W3109633336 @default.
- W3109633336 hasPrimaryLocation W31096333361 @default.
- W3109633336 hasRelatedWork W2961085424 @default.
- W3109633336 hasRelatedWork W3107474891 @default.
- W3109633336 hasRelatedWork W3192794374 @default.
- W3109633336 hasRelatedWork W3200179079 @default.
- W3109633336 hasRelatedWork W4200526184 @default.
- W3109633336 hasRelatedWork W4281608370 @default.
- W3109633336 hasRelatedWork W4285815787 @default.
- W3109633336 hasRelatedWork W4360986142 @default.
- W3109633336 hasRelatedWork W4362613237 @default.
- W3109633336 hasRelatedWork W1872130062 @default.
- W3109633336 isParatext "false" @default.
- W3109633336 isRetracted "false" @default.
- W3109633336 magId "3109633336" @default.
- W3109633336 workType "article" @default.