Matches in SemOpenAlex for { <https://semopenalex.org/work/W3109662912> ?p ?o ?g. }
- W3109662912 endingPage "201" @default.
- W3109662912 startingPage "188" @default.
- W3109662912 abstract "Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches. A hybrid stacking ensemble approach is proposed in this study for enhancing the prediction of slope stability. In the hybrid stacking ensemble approach, we used an artificial bee colony (ABC) algorithm to find out the best combination of base classifiers (level 0) and determined a suitable meta-classifier (level 1) from a pool of 11 individual optimized machine learning (OML) algorithms. Finite element analysis (FEA) was conducted in order to form the synthetic database for the training stage (150 cases) of the proposed model while 107 real field slope cases were used for the testing stage. The results by the hybrid stacking ensemble approach were then compared with that obtained by the 11 individual OML methods using confusion matrix, F1-score, and area under the curve, i.e. AUC-score. The comparisons showed that a significant improvement in the prediction ability of slope stability has been achieved by the hybrid stacking ensemble (AUC = 90.4%), which is 7% higher than the best of the 11 individual OML methods (AUC = 82.9%). Then, a further comparison was undertaken between the hybrid stacking ensemble method and basic ensemble classifier on slope stability prediction. The results showed a prominent performance of the hybrid stacking ensemble method over the basic ensemble method. Finally, the importance of the variables for slope stability was studied using linear vector quantization (LVQ) method." @default.
- W3109662912 created "2020-12-07" @default.
- W3109662912 creator A5046193097 @default.
- W3109662912 creator A5056380462 @default.
- W3109662912 creator A5062829130 @default.
- W3109662912 creator A5072210987 @default.
- W3109662912 date "2021-02-01" @default.
- W3109662912 modified "2023-10-16" @default.
- W3109662912 title "Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data" @default.
- W3109662912 cites W1977813873 @default.
- W3109662912 cites W1978784463 @default.
- W3109662912 cites W1979486410 @default.
- W3109662912 cites W1981505587 @default.
- W3109662912 cites W1989158271 @default.
- W3109662912 cites W1994966883 @default.
- W3109662912 cites W2000891317 @default.
- W3109662912 cites W2006417187 @default.
- W3109662912 cites W2012140778 @default.
- W3109662912 cites W2014235350 @default.
- W3109662912 cites W2019513543 @default.
- W3109662912 cites W2021851084 @default.
- W3109662912 cites W2027751236 @default.
- W3109662912 cites W2035051475 @default.
- W3109662912 cites W2036718988 @default.
- W3109662912 cites W2036996527 @default.
- W3109662912 cites W2042287401 @default.
- W3109662912 cites W2042699449 @default.
- W3109662912 cites W2056132907 @default.
- W3109662912 cites W2067130442 @default.
- W3109662912 cites W2069527243 @default.
- W3109662912 cites W2071303046 @default.
- W3109662912 cites W2071673097 @default.
- W3109662912 cites W2079505676 @default.
- W3109662912 cites W2085519630 @default.
- W3109662912 cites W2089045143 @default.
- W3109662912 cites W2094602040 @default.
- W3109662912 cites W2103540160 @default.
- W3109662912 cites W2113538602 @default.
- W3109662912 cites W2119969191 @default.
- W3109662912 cites W2144317842 @default.
- W3109662912 cites W2151537585 @default.
- W3109662912 cites W2153154444 @default.
- W3109662912 cites W2161064703 @default.
- W3109662912 cites W2189812299 @default.
- W3109662912 cites W2327486048 @default.
- W3109662912 cites W2341060459 @default.
- W3109662912 cites W2416094904 @default.
- W3109662912 cites W2416126149 @default.
- W3109662912 cites W2417137833 @default.
- W3109662912 cites W2472663388 @default.
- W3109662912 cites W2475539404 @default.
- W3109662912 cites W2587950680 @default.
- W3109662912 cites W2605299208 @default.
- W3109662912 cites W2617146439 @default.
- W3109662912 cites W2623307358 @default.
- W3109662912 cites W2740339455 @default.
- W3109662912 cites W2773213923 @default.
- W3109662912 cites W2775745878 @default.
- W3109662912 cites W2781233062 @default.
- W3109662912 cites W2783350994 @default.
- W3109662912 cites W2791165267 @default.
- W3109662912 cites W2791551166 @default.
- W3109662912 cites W2793257870 @default.
- W3109662912 cites W2808701867 @default.
- W3109662912 cites W2808860853 @default.
- W3109662912 cites W2809569526 @default.
- W3109662912 cites W28412257 @default.
- W3109662912 cites W2878701519 @default.
- W3109662912 cites W2888176524 @default.
- W3109662912 cites W2900797503 @default.
- W3109662912 cites W2903721734 @default.
- W3109662912 cites W2911893501 @default.
- W3109662912 cites W2990990692 @default.
- W3109662912 cites W2993667365 @default.
- W3109662912 cites W3094197203 @default.
- W3109662912 cites W4210949798 @default.
- W3109662912 cites W4212883601 @default.
- W3109662912 cites W649268238 @default.
- W3109662912 doi "https://doi.org/10.1016/j.jrmge.2020.05.011" @default.
- W3109662912 hasPublicationYear "2021" @default.
- W3109662912 type Work @default.
- W3109662912 sameAs 3109662912 @default.
- W3109662912 citedByCount "90" @default.
- W3109662912 countsByYear W31096629122021 @default.
- W3109662912 countsByYear W31096629122022 @default.
- W3109662912 countsByYear W31096629122023 @default.
- W3109662912 crossrefType "journal-article" @default.
- W3109662912 hasAuthorship W3109662912A5046193097 @default.
- W3109662912 hasAuthorship W3109662912A5056380462 @default.
- W3109662912 hasAuthorship W3109662912A5062829130 @default.
- W3109662912 hasAuthorship W3109662912A5072210987 @default.
- W3109662912 hasBestOaLocation W31096629121 @default.
- W3109662912 hasConcept C112972136 @default.
- W3109662912 hasConcept C11413529 @default.
- W3109662912 hasConcept C119857082 @default.
- W3109662912 hasConcept C119898033 @default.
- W3109662912 hasConcept C121332964 @default.
- W3109662912 hasConcept C127413603 @default.